scispace - formally typeset
Search or ask a question
Author

David F. R. P. Burslem

Other affiliations: University of Cambridge
Bio: David F. R. P. Burslem is an academic researcher from University of Aberdeen. The author has contributed to research in topics: Biodiversity & Rainforest. The author has an hindex of 54, co-authored 190 publications receiving 8794 citations. Previous affiliations of David F. R. P. Burslem include University of Cambridge.


Papers
More filters
Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations

Journal ArticleDOI
Kristina J. Anderson-Teixeira1, Kristina J. Anderson-Teixeira2, Stuart J. Davies2, Stuart J. Davies3, Amy C. Bennett1, Erika Gonzalez-Akre1, Helene C. Muller-Landau2, S. Joseph Wright2, Kamariah Abu Salim, Angelica M. Almeyda Zambrano1, Angelica M. Almeyda Zambrano4, Angelica M. Almeyda Zambrano5, Alfonso Alonso1, Jennifer L. Baltzer6, Yves Basset2, Norman A. Bourg1, Eben N. Broadbent5, Eben N. Broadbent1, Eben N. Broadbent4, Warren Y. Brockelman7, Sarayudh Bunyavejchewin8, David F. R. P. Burslem9, Nathalie Butt10, Nathalie Butt11, Min Cao12, Dairon Cárdenas, George B. Chuyong13, Keith Clay14, Susan Cordell15, H. S. Dattaraja16, Xiaobao Deng12, Matteo Detto2, Xiaojun Du17, Alvaro Duque18, David L. Erikson3, Corneille E. N. Ewango, Gunter A. Fischer, Christine Fletcher19, Robin B. Foster, Christian P. Giardina15, Gregory S. Gilbert2, Gregory S. Gilbert20, Nimal Gunatilleke21, Savitri Gunatilleke21, Zhanqing Hao17, William W. Hargrove15, Terese B. Hart, Billy C.H. Hau22, Fangliang He23, Forrest M. Hoffman24, Robert W. Howe25, Stephen P. Hubbell2, Stephen P. Hubbell26, Faith Inman-Narahari27, Patrick A. Jansen28, Patrick A. Jansen2, Mingxi Jiang17, Daniel J. Johnson14, Mamoru Kanzaki29, Abdul Rahman Kassim19, David Kenfack2, David Kenfack3, Staline Kibet30, Margaret F. Kinnaird31, Lisa Korte1, Kamil Král, Jitendra Kumar24, Andrew J. Larson32, Yide Li, Xiankun Li17, Shirong Liu, Shawn K. Y. Lum33, James A. Lutz34, Keping Ma17, Damian M. Maddalena24, Jean-Remy Makana31, Yadvinder Malhi10, Toby R. Marthews10, Rafizah Mat Serudin, Sean M. McMahon35, Sean M. McMahon2, William J. McShea1, Hervé Memiaghe36, Xiangcheng Mi17, Takashi Mizuno29, Michael D. Morecroft37, Jonathan Myers38, Vojtech Novotny39, Alexandre Adalardo de Oliveira40, Perry S. Ong41, David A. Orwig42, Rebecca Ostertag43, Jan den Ouden28, Geoffrey G. Parker35, Richard P. Phillips14, Lawren Sack26, Moses N. Sainge, Weiguo Sang17, Kriangsak Sri-ngernyuang44, Raman Sukumar16, I-Fang Sun45, Witchaphart Sungpalee44, H. S. Suresh16, Sylvester Tan, Sean C. Thomas46, Duncan W. Thomas47, Jill Thompson48, Benjamin L. Turner2, María Uriarte49, Renato Valencia50, Marta I. Vallejo, Alberto Vicentini51, Tomáš Vrška, Xihua Wang52, Xugao Wang, George D. Weiblen53, Amy Wolf25, Han Xu, Sandra L. Yap41, Jess K. Zimmerman48 
Smithsonian Conservation Biology Institute1, Smithsonian Tropical Research Institute2, National Museum of Natural History3, Stanford University4, University of Alabama5, Wilfrid Laurier University6, Mahidol University7, Department of National Parks, Wildlife and Plant Conservation8, University of Aberdeen9, Environmental Change Institute10, University of Queensland11, Xishuangbanna Tropical Botanical Garden12, University of Buea13, Indiana University14, United States Forest Service15, Indian Institute of Science16, Chinese Academy of Sciences17, National University of Colombia18, Forest Research Institute Malaysia19, University of California, Santa Cruz20, University of Peradeniya21, University of Hong Kong22, University of Alberta23, Oak Ridge National Laboratory24, University of Wisconsin–Green Bay25, University of California, Los Angeles26, College of Tropical Agriculture and Human Resources27, Wageningen University and Research Centre28, Kyoto University29, University of Nairobi30, Wildlife Conservation Society31, University of Montana32, Nanyang Technological University33, Utah State University34, Smithsonian Environmental Research Center35, Centre national de la recherche scientifique36, Natural England37, Washington University in St. Louis38, Academy of Sciences of the Czech Republic39, University of São Paulo40, University of the Philippines Diliman41, Harvard University42, University of Hawaii at Hilo43, Maejo University44, National Dong Hwa University45, University of Toronto46, Washington State University Vancouver47, University of Puerto Rico, Río Piedras48, Columbia University49, Pontificia Universidad Católica del Ecuador50, National Institute of Amazonian Research51, East China Normal University52, University of Minnesota53
TL;DR: The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Abstract: Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

470 citations

Journal ArticleDOI
TL;DR: In this paper, some potentially misleading discrepancies that occur in the recent ecological literature are examined.
Abstract: Ecologists frequently measure and compare mortality rates and other count-dependent rates of change. The simplest measures employ mortality counts for predetermined populations over a defined census interval (e.g. Harper 1977; Putz & Milton 1983; Connell et al. 1984; Hubbell & Foster 1990; Turner 1990; Osunkoya et al. 1992). More complex formulations are required to allow comparison over varying time periods, because these measures require a knowledge or assumption of how probabilities of death change over time. In many ecological applications this probability is taken to be constant and can therefore be used to define a rate. In this paper we examine some potentially misleading discrepancies that occur in the recent ecological literature. In its simplest form a constant mortality is modelled by exponential population decline:

450 citations

Journal ArticleDOI
TL;DR: In this article, the authors apply summary statistics from current theory of spatial point processes for extracting information from spatial patterns of plants, which can be used to describe spatial relationships of neighbouring plants with different qualitative properties, such as species identity and size class.
Abstract: Summary 1. This article reviews the application of some summary statistics from current theory of spatial point processes for extracting information from spatial patterns of plants. Theoretical measures and issues connected with their estimation are described. Results are illustrated in the context of specific ecological questions about spatial patterns of trees in two forests. 2. The pair correlation function, related to Ripley’s K function, provides a formal measure of the density of neighbouring plants and makes precise the general notion of a ‘plant’s-eye’ view of a community. The pair correlation function can also be used to describe spatial relationships of neighbouring plants with different qualitative properties, such as species identity and size class. 3. The mark correlation function can be used to describe the spatial relationships of quantitative measures (e.g. biomass). We discuss two types of correlation function for quantitative marks. Applying these functions to the distribution of biomass in a temperate forest, it is shown that the spatial pattern of biomass is uncoupled from the spatial pattern of plant locations. 4. The inhomogeneous pair correlation function enables first-order heterogeneity in the environment to be removed from second-order spatial statistics. We illustrate this for a tree species in a forest of high topographic heterogeneity and show that spatial aggregation remains after allowing for spatial variation in density. An alternative method, the master function, takes a weighted average of homogeneous pair correlation functions computed in subareas; when applied to the same data and compared with the former method, the spatial aggregations are smaller in size. 5. Synthesis. These spatial statistics, especially those derived from pair densities, will help ecologists to extract important ecological information from intricate spatially correlated plants in populations and communities.

394 citations

Journal ArticleDOI
James A. Lutz, Tucker J. Furniss, Daniel J. Johnson, Stuart J. Davies1, David Allen, Alfonso Alonso, Kristina J. Anderson-Teixeira2, Ana Andrade, Jennifer L. Baltzer, Kendall M. L. Becker, Erika M. Blomdahl, Norman A. Bourg3, Norman A. Bourg2, Sarayudh Bunyavejchewin, David F. R. P. Burslem4, C. Alina Cansler, Ke Cao5, Min Cao5, Dairon Cárdenas, Li-Wan Chang, Kuo-Jung Chao, Wei-Chun Chao, Jyh-Min Chiang, Chengjin Chu, George B. Chuyong, Keith Clay, Richard Condit, Susan Cordell6, H. S. Dattaraja, Alvaro Duque7, Corneille E. N. Ewango, Gunter A. Fischer, Christine Fletcher, James A. Freund, Christian P. Giardina6, Sara J. Germain, Gregory S. Gilbert, Zhanqing Hao, Terese B. Hart, Billy C.H. Hau8, Fangliang He, Andy Hector, Robert W. Howe, Chang-Fu Hsieh9, Yue-Hua Hu5, Stephen P. Hubbell, Faith Inman-Narahari6, Akira Itoh, David Janík, Abdul Rahman Kassim, David Kenfack1, Lisa Korte, Kamil Král, Andrew J. Larson10, Yide Li, Yiching Lin, Shirong Liu, Shawn K. Y. Lum, Keping Ma5, Jean-Remy Makana, Yadvinder Malhi11, Sean M. McMahon12, William J. McShea2, Hervé Memiaghe13, Xiangcheng Mi5, Michael D. Morecroft11, Paul M. Musili, Jonathan Myers, Vojtech Novotny14, Alexandre Adalardo de Oliveira, Perry S. Ong15, David A. Orwig16, Rebecca Ostertag, Geoffrey G. Parker12, Rajit Patankar17, Richard P. Phillips, Glen Reynolds18, Lawren Sack, Guo-Zhang Michael Song, Sheng-Hsin Su, Raman Sukumar, I-Fang Sun, Hebbalalu S. Suresh, Mark E. Swanson, Sylvester Tan, Duncan W. Thomas, Jill Thompson, María Uriarte, Renato Valencia, Alberto Vicentini, Tomáš Vrška, Xugao Wang, George D. Weiblen, Amy Wolf, Shu-Hui Wu19, Han Xu, Takuo Yamakura, Sandra L. Yap15, Jess K. Zimmerman 
TL;DR: Because large-diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling.
Abstract: Aim: To examine the contribution of large-diameter trees to biomass, stand structure, and species richness across forest biomes. Location: Global. Time period: Early 21st century. Major taxa studied: Woody plants. Methods: We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees >= 1 cm diameter at breast height (DBH), all trees >= 60 cm DBH, and those rank-ordered largest trees that cumulatively comprise 50% of forest biomass. Results: Averaged across these 48 forest plots, the largest 1% of trees >= 1 cm DBH comprised 50% of aboveground live biomass, with hectare-scale standard deviation of 26%. Trees >= 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r(2) 5.62, p < .001). Large-diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r(2) = 5.45, p < .001). Forests with more diverse large-diameter tree communities were comprised of smaller trees (r(2) = 5.33, p < .001). Lower large-diameter richness was associated with large-diameter trees being individuals of more common species (r(2) =5.17, p=5.002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r(2) = 5.46, p < .001), as did forest density (r(2) = 5.31, p < .001). Forest structural complexity increased with increasing absolute latitude (r(2) = 5.26, p < .001). Main conclusions: Because large-diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large-diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.

297 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: A protocol for data exploration is provided; current tools to detect outliers, heterogeneity of variance, collinearity, dependence of observations, problems with interactions, double zeros in multivariate analysis, zero inflation in generalized linear modelling, and the correct type of relationships between dependent and independent variables are discussed; and advice on how to address these problems when they arise is provided.
Abstract: Summary 1. While teaching statistics to ecologists, the lead authors of this paper have noticed common statistical problems. If a random sample of their work (including scientific papers) produced before doing these courses were selected, half would probably contain violations of the underlying assumptions of the statistical techniques employed. 2. Some violations have little impact on the results or ecological conclusions; yet others increase type I or type II errors, potentially resulting in wrong ecological conclusions. Most of these violations can be avoided by applying better data exploration. These problems are especially troublesome in applied ecology, where management and policy decisions are often at stake. 3. Here, we provide a protocol for data exploration; discuss current tools to detect outliers, heterogeneity of variance, collinearity, dependence of observations, problems with interactions, double zeros in multivariate analysis, zero inflation in generalized linear modelling, and the correct type of relationships between dependent and independent variables; and provide advice on how to address these problems when they arise. We also address misconceptions about normality, and provide advice on data transformations. 4. Data exploration avoids type I and type II errors, among other problems, thereby reducing the chance of making wrong ecological conclusions and poor recommendations. It is therefore essential for good quality management and policy based on statistical analyses.

5,894 citations

Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations