scispace - formally typeset
Search or ask a question
Author

David Fleisher

Bio: David Fleisher is an academic researcher from University of Michigan. The author has contributed to research in topics: Intestinal absorption & Pharmacokinetics. The author has an hindex of 31, co-authored 59 publications receiving 3586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The current status of information regarding interactions which may influence the gastrointestinal (GI) absorption of orally administered drugs is presented and regional differences in membrane permeability are discussed.
Abstract: Drug-drug, drug-formulation and drug-meal interactions are of clinical concern for orally administered drugs that possess a narrow therapeutic index. This review presents the current status of information regarding interactions which may influence the gastrointestinal (GI) absorption of orally administered drugs. Absorption interactions have been classified on the basis of rate-limiting processes. These processes are put in the context of drug and formulation physicochemical properties and oral input influences on variable GI physiology. Interaction categorisation makes use of a biopharmaceutical classification system based on drug aqueous solubility and membrane permeability and their contributions towards absorption variability. Overlaying this classification it is important to be aware of the effect that the magnitudes of drug dosage and volume of fluid administration can have on interactions involving a solubility rate limits. GI regional differences in membrane permeability are fundamental to the rational development of extended release dosage forms as well as to predicting interaction effects on absorption from immediate release dosage forms. The effect of meals on the regional-dependent intestinal elimination of drugs and their involvement in drug absorption interactions is also discussed. Although the clinical significance of such interactions is certainly dependent on the narrowness of the drug therapeutic index, clinical aspects of absorption delays and therapeutic failures resulting from various interactions are also important.

464 citations

Journal ArticleDOI
TL;DR: Prodrug strategies coupling drug solubilization with membrane carrier targeting and the use of collapsible and bifunctional prodrugs are outlined, and studies utilizing model compounds to test the strategy are illustrated.

425 citations

Journal ArticleDOI
TL;DR: Gene expression profiling is a valuable new tool for investigating in vitro and in vivo permeability correlation and was consistent with observed differences in carrier mediated drug permeabilities.
Abstract: Purpose. To compare gene expression profiles and drug permeability differences in Caco-2 cell culture and human duodenum. Methods. Gene expression profiles in Caco-2 cells and human duodenum were determined by GeneChip® analysis. In vivo drug permeability measurements were obtained through single-pass intestinal perfusion in human subjects, and correlated with in vitro Caco-2 transport permeability. Results. GeneChip® analysis determined that 37, 47, and 44 percent of the 12,559 gene sequences were expressed in 4-day and16-day Caco-2 cells and human duodenum, respectively. Comparing human duodenum with Caco-2 cells, more than 1000 sequences were determined to have at least a 5-fold difference in expression. There were 26, 38, and 44 percent of the 443 transporters, channels, and metabolizing enzymes detected in 4-day, 16-day Caco-2 cells, and human duodenum, respectively. More than 70 transporters and metabolizing enzymes exhibited at least a 3-fold difference. The overall coefficient of variability of the 10 human duodenal samples for all expressed sequences was 31% (range 3% to 294%) while that of the expressed transporters and metabolizing enzymes was 33% (range 3% to 87%). The in vivo / in vitro drug permeability measurements correlated well for passively absorbed drugs (R2 = 85%). The permeability correlation for carrier-mediated drugs showed 3- 35-fold higher in human above the correlation of passively absorbed drugs. The 2- 595-fold differences in gene expression levels between the Caco-2 cells and human duodenum correlated with the observed 3- 35-fold difference in permeability correlation between carrier-mediated drugs and passively absorbed drugs. Conclusions. Significant differences in gene expression levels in Caco-2 cells and human duodenum were observed. The observed differences of gene expression levels were consistent with observed differences in carrier mediated drug permeabilities. Gene expression profiling is a valuable new tool for investigating in vitro and in vivo permeability correlation.

380 citations

Journal ArticleDOI
TL;DR: The correlation between fraction dose absorbed in humans and Pw* determined from steady-state perfused rat intestinal segments gives an excellent correlation, indicating that Pw*, is one of the key variables controlling oral drug absorption and that the correlation may be useful for estimating oral drugabsorption in humans regardless of the mechanism of absorption.
Abstract: Based on a simple tube model for drug absorption, the key parameters controlling drug absorption are shown to be the dimensionless effective permeability, P eff *, and the Graetz number, Gz, when metabolism or solubility/dissolution is not rate controlling. Estimating the Graetz number in humans and assuming that P aq * is not rate controlling gives the following equation for fraction dose absorbed: F = 1− e −2 P*w. The correlation between fraction dose absorbed in humans and P w * determined from steady-state perfused rat intestinal segments gives an excellent correlation. It is of particular significance that the correlation includes drugs that are absorbed by passive and carrier-mediated processes. This indicates that P w * is one of the key variables controlling oral drug absorption and that the correlation may be useful for estimating oral drug absorption in humans regardless of the mechanism of absorption.

291 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A biopharmaceutics drug classification scheme for correlating in vitro drug product dissolution and in vivo bioavailability is proposed based on recognizing that drug dissolution and gastrointestinal permeability are the fundamental parameters controlling rate and extent of drug absorption.
Abstract: A biopharmaceutics drug classification scheme for correlating in vitro drug product dissolution and in vivo bioavailability is proposed based on recognizing that drug dissolution and gastrointestinal permeability are the fundamental parameters controlling rate and extent of drug absorption. This analysis uses a transport model and human permeability results for estimating in vivo drug absorption to illustrate the primary importance of solubility and permeability on drug absorption. The fundamental parameters which define oral drug absorption in humans resulting from this analysis are discussed and used as a basis for this classification scheme. These Biopharmaceutic Drug Classes are defined as: Case 1. High solubility-high permeability drugs, Case 2. Low solubility-high permeability drugs, Case 3. High solubility-low permeability drugs, and Case 4. Low solubility-low permeability drugs. Based on this classification scheme, suggestions are made for setting standards for in vitro drug dissolution testing methodology which will correlate with the in vivo process. This methodology must be based on the physiological and physical chemical properties controlling drug absorption. This analysis points out conditions under which no in vitro-in vivo correlation may be expected e.g. rapidly dissolving low permeability drugs. Furthermore, it is suggested for example that for very rapidly dissolving high solubility drugs, e.g. 85% dissolution in less than 15 minutes, a simple one point dissolution test, is all that may be needed to insure bioavailability. For slowly dissolving drugs a dissolution profile is required with multiple time points in systems which would include low pH, physiological pH, and surfactants and the in vitro conditions should mimic the in vivo processes. This classification scheme provides a basis for establishing in vitro-in vivo correlations and for estimating the absorption of drugs based on the fundamental dissolution and permeability properties of physiologic importance.

5,049 citations

Journal ArticleDOI
TL;DR: The results indicate that Caco-2 monolayers can be used as a model for studies on intestinal drug absorption and a good correlation was obtained between data on oral absorption in humans and the results in the Cco-2 model.

1,794 citations

Journal ArticleDOI
TL;DR: It is concluded that Caco-2 monolayers can be used to identify drugs with potential absorption problems, and possibly also to select drugs with optimal passive absorption characteristics from series of pharmacologically active molecules generated in drug discovery programs.

1,417 citations

Journal ArticleDOI
TL;DR: The most common functional groups that are amenable to prodrug design are described, and examples of prodrugs that are either launched or are undergoing human trials are highlighted.
Abstract: Prodrugs are bioreversible derivatives of drug molecules that undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then exert the desired pharmacological effect. In both drug discovery and development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents. About 5-7% of drugs approved worldwide can be classified as prodrugs, and the implementation of a prodrug approach in the early stages of drug discovery is a growing trend. To illustrate the applicability of the prodrug strategy, this article describes the most common functional groups that are amenable to prodrug design, and highlights examples of prodrugs that are either launched or are undergoing human trials.

1,412 citations

Journal ArticleDOI
TL;DR: It is suggested that a Biopharmaceutics Drug Disposition Classification System (BDDCS) using elimination criteria may expand the number of Class 1 drugs eligible for a waiver of in vivo bioequivalence studies and provide predictability of drug disposition profiles for Classes 2, 3, and 4 compounds.
Abstract: The Biopharmaceutics Classification System (BCS) was developed to allow prediction of in vivo pharmacokinetic performance of drug products from measurements of permeability (determined as the extent of oral absorption) and solubility. Here, we suggest that a modified version of such a classification system may be useful in predicting overall drug disposition, including routes of drug elimination and the effects of efflux and absorptive transporters on oral drug absorption; when transporter-enzyme interplay will yield clinically significant effects (e.g., low bioavailability and drug-drug interactions); the direction, mechanism, and importance of food effects; and transporter effects on postabsorption systemic drug concentrations following oral and intravenous dosing. These predictions are supported by a series of studies from our laboratory during the past few years investigating the effect of transporter inhibition and induction on drug metabolism. We conclude by suggesting that a Biopharmaceutics Drug Disposition Classification System (BDDCS) using elimination criteria may expand the number of Class 1 drugs eligible for a waiver of in vivo bioequivalence studies and provide predictability of drug disposition profiles for Classes 2, 3, and 4 compounds.

1,292 citations