scispace - formally typeset
Search or ask a question
Author

David Forman

Bio: David Forman is an academic researcher from International Agency for Research on Cancer. The author has contributed to research in topics: Population & Cancer. The author has an hindex of 95, co-authored 310 publications receiving 142982 citations. Previous affiliations of David Forman include Cancer Epidemiology Unit & Medical Research Council.


Papers
More filters
Journal ArticleDOI
01 Mar 2015-Gut
TL;DR: These first global estimates of oesophageal cancer incidence by histology suggested a high concentration of AC in high-income countries with men being at much greater risk.
Abstract: Objective The two major histological types of oesophageal cancer—adenocarcinoma (AC) and squamous cell carcinoma (SCC)—are known to differ greatly in terms of risk factors and epidemiology. To date, global incidence estimates for individual subtypes are still lacking. This study for the first time quantified the global burden of oesophageal cancer by histological subtype. Design Where available, data from Cancer Incidence in Five Continents Vol. X (CI5X) were used to compute, age-specific, sex-specific and country-specific proportions of AC and SCC. Nine regional averages were computed for countries without CI5X data. The proportions were then applied to all oesophageal cancer cases from GLOBOCAN 2012 and age-standardised incidence rates calculated for both histological types. Results Worldwide, an estimated 398 000 SCCs and 52 000 ACs of the oesophagus occurred in 2012, translating to incidence rates of 5.2 and 0.7 per 100 000, respectively. Although SCCs were most common in South-Eastern and Central Asia (79% of the total global SCC cases), the highest burden of AC was found in Northern and Western Europe, Northern America and Oceania (46% of the total global AC cases). Men had substantially higher incidence than women, especially in the case of AC (male to female ratio AC: 4.4; SCC: 2.7). Conclusions These first global estimates of oesophageal cancer incidence by histology suggested a high concentration of AC in high-income countries with men being at much greater risk. This quantification of incidence will aid health policy makers to plan appropriate cancer control measures in the future.

1,046 citations

Journal ArticleDOI
TL;DR: In this paper, the first study in a programme to investigate international survival disparities, with the aim of informing health policy to raise standards and reduce inequalities in survival, was presented, where data from population-based cancer registries in 12 jurisdictions in six countries were provided for 2·4 million adults diagnosed with primary colorectal, lung, breast, ovarian, or ovarian cancer during 1995-2007, with follow-up to Dec 31, 2007.

1,031 citations

Journal ArticleDOI
TL;DR: The continuation of current patterns of population weight gain will lead to continuing increases in the future burden of cancer, and the need for a global effort to abate the increasing numbers of people with high BMI is emphasised.
Abstract: Summary Background High body-mass index (BMI; defined as 25 kg/m 2 or greater) is associated with increased risk of cancer. To inform public health policy and future research, we estimated the global burden of cancer attributable to high BMI in 2012. Methods In this population-based study, we derived population attributable fractions (PAFs) using relative risks and BMI estimates in adults by age, sex, and country. Assuming a 10-year lag-period between high BMI and cancer occurrence, we calculated PAFs using BMI estimates from 2002 and used GLOBOCAN2012 data to estimate numbers of new cancer cases attributable to high BMI. We also calculated the proportion of cancers that were potentially avoidable had populations maintained their mean BMIs recorded in 1982. We did secondary analyses to test the model and to estimate the effects of hormone replacement therapy (HRT) use and smoking. Findings Worldwide, we estimate that 481 000 or 3·6% of all new cancer cases in adults (aged 30 years and older after the 10-year lag period) in 2012 were attributable to high BMI. PAFs were greater in women than in men (5·4% vs 1·9%). The burden of attributable cases was higher in countries with very high and high human development indices (HDIs; PAF 5·3% and 4·8%, respectively) than in those with moderate (1·6%) and low HDIs (1·0%). Corpus uteri, postmenopausal breast, and colon cancers accounted for 63·6% of cancers attributable to high BMI. A quarter (about 118 000) of the cancer cases related to high BMI in 2012 could be attributed to the increase in BMI since 1982. Interpretation These findings emphasise the need for a global effort to abate the increasing numbers of people with high BMI. Assuming that the association between high BMI and cancer is causal, the continuation of current patterns of population weight gain will lead to continuing increases in the future burden of cancer. Funding World Cancer Research Fund International, European Commission (Marie Curie Intra-European Fellowship), Australian National Health and Medical Research Council, and US National Institutes of Health.

718 citations

Journal ArticleDOI
TL;DR: The purpose of this short report is to update the attributable fraction (AF) estimate for H. pylori in NCGC, and to reassess the global burden of cancer attributable to H. Pylori as a major cause of cancer.
Abstract: We previously estimated that 660,000 cases of cancer in the year 2008 were attributable to the bacterium Helicobacter pylori (H. pylori), corresponding to 5.2% of the 12.7 million total cancer cases that occurred worldwide. In recent years, evidence has accumulated that immunoblot (western blot) is more sensitive for detection of anti-H. pylori antibodies than ELISA, the detection method used in our previous analysis. The purpose of this short report is to update the attributable fraction (AF) estimate for H. pylori after briefly reviewing new evidence, and to reassess the global burden of cancer attributable to H. pylori. We therefore reviewed the literature for studies comparing the risk of developing non-cardia gastric cancer (NCGC) in cases and controls, using both ELISA and multiple antigen immunoblot for detection of H. pylori. The results from prospective studies were combined, and the new pooled estimates were applied to the calculation of the AF for H. pylori in NCGC, then to the burden of infection-related cancers worldwide. Using the immunoblot-based data, the worldwide AF for H. pylori in NCGC increased from 74.7% to 89.0%. This implies approximately 120,000 additional cases of NCGC attributable to H. pylori infection for a total of around 780,000 cases (6.2% instead of 5.2% of all cancers). These updated estimates reinforce the role of H. pylori as a major cause of cancer.

673 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN series of the International Agency for Research on Cancer (IARC) as mentioned in this paper provides estimates of the worldwide incidence and mortality from 27 major cancers and for all cancers combined for 2012.
Abstract: Estimates of the worldwide incidence and mortality from 27 major cancers and for all cancers combined for 2012 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. We review the sources and methods used in compiling the national cancer incidence and mortality estimates, and briefly describe the key results by cancer site and in 20 large “areas” of the world. Overall, there were 14.1 million new cases and 8.2 million deaths in 2012. The most commonly diagnosed cancers were lung (1.82 million), breast (1.67 million), and colorectal (1.36 million); the most common causes of cancer death were lung cancer (1.6 million deaths), liver cancer (745,000 deaths), and stomach cancer (723,000 deaths).

24,414 citations

Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations