scispace - formally typeset
Search or ask a question
Author

David G. Coughlin

Bio: David G. Coughlin is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Medicine & Progressive supranuclear palsy. The author has an hindex of 10, co-authored 21 publications receiving 344 citations. Previous affiliations of David G. Coughlin include Pennsylvania Hospital & University of California, San Diego.

Papers
More filters
Journal ArticleDOI
TL;DR: Defining cell-specific stages of tau pathology helps to identify preclinical or early-stage cases for the better understanding of early pathogenic events, has implications for understanding the clinical subtype-specific dynamics of disease-propagation, and informs tau-neuroimaging on distribution patterns.
Abstract: Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. We used conditional probability and logistic regression to model the sequential distribution of tau pathologies across different brain regions. Tau pathology uniformly predominates in the neurons of the pallido-nigro-luysian axis in different clinical subtypes. However, clinical subtypes are distinguished not only by total tau load but rather cell-type (neuronal versus glial) specific vulnerability patterns of brain regions suggesting distinct dynamics or circuit-specific segregation of propagation of tau pathologies. For Richardson syndrome (n = 81) we recognize six sequential steps of involvement of brain regions by the combination of cellular tau pathologies. This is translated to six stages for the practical neuropathological diagnosis by the evaluation of the subthalamic nucleus, globus pallidus, striatum, cerebellum with dentate nucleus, and frontal and occipital cortices. This system can be applied to further clinical subtypes by emphasizing whether they show caudal (cerebellum/dentate nucleus) or rostral (cortical) predominant, or both types of pattern. Defining cell-specific stages of tau pathology helps to identify preclinical or early-stage cases for the better understanding of early pathogenic events, has implications for understanding the clinical subtype-specific dynamics of disease-propagation, and informs tau-neuroimaging on distribution patterns.

168 citations

Journal ArticleDOI
TL;DR: Using digital histology in a large autopsy cohort of Lewy body disorder patients with dementia to test the hypotheses that co‐occurring Alzheimer disease pathology impacts the anatomic distribution of α‐synuclein (SYN) pathology and that co-occurring neocortical tau pathology in LBDs associates with worse cognitive performance and occurs in a pattern differing from AD.
Abstract: Objective: To use digital histology in a large autopsy cohort of Lewy Body Disorder (LBD) patients with dementia to test the hypotheses that co-occurring Alzheimer’s disease (AD) pathology impacts the anatomic distribution of α-synuclein (SYN) pathology and that co-occurring neocortical tau pathology in LBD associates with worse cognitive performance and occurs in a pattern differing from AD.

87 citations

Journal ArticleDOI
TL;DR: Higher antemortem CSF t-tau/Aβ1-42 and lower Aβ1/42 levels are predictive of increasing cerebral AD and SYN pathology, which may identify patients with LBD vulnerable to cortical SYn pathology who may benefit from both SYN and AD-targeted disease-modifying therapies.
Abstract: Objective To test the association of antemortem CSF biomarkers with postmortem pathology in Lewy body disorders (LBD). Methods Patients with autopsy-confirmed LBD (n = 24) and autopsy-confirmed Alzheimer disease (AD) (n = 23) and cognitively normal (n = 36) controls were studied. In LBD, neuropathologic criteria defined Lewy body α-synuclein (SYN) stages with medium/high AD copathology (SYN + AD = 10) and low/no AD copathology (SYN − AD = 14). Ordinal pathology scores for tau, β-amyloid (Aβ), and SYN pathology were averaged across 7 cortical regions to obtain a global cerebral score for each pathology. CSF total tau (t-tau), phosphorylated tau at threonine 181 , and Aβ 1-42 levels were compared between LBD and control groups and correlated with global cerebral pathology scores in LBD with linear regression. Diagnostic accuracy for postmortem categorization of LBD into SYN + AD vs SYN − AD or neocortical vs brainstem/limbic SYN stage was tested with receiver operating curves. Results SYN + AD had higher CSF t-tau (mean difference 27.0 ± 8.6 pg/mL) and lower Aβ 1-42 (mean difference −84.0 ± 22.9 g/mL) compared to SYN − AD ( p R 2 = 0.15–0.16, p 1-42 ( R 2 = 0.43–0.49, p 1-42 ( R 2 = 0.31, p 1-42 ratio ( R 2 = 0.27, p = 0.01). CSF t-tau/Aβ 1-42 ratio had 100% specificity and 90% sensitivity for SYN + AD, and CSF Aβ 1-42 had 77% specificity and 82% sensitivity for neocortical SYN stage. Conclusions Higher antemortem CSF t-tau/Aβ 1-42 and lower Aβ 1-42 levels are predictive of increasing cerebral AD and SYN pathology. These biomarkers may identify patients with LBD vulnerable to cortical SYN pathology who may benefit from both SYN and AD-targeted disease-modifying therapies.

68 citations

Journal ArticleDOI
TL;DR: The findings suggest that the astroglial “scar” in sclerotic MTLE has active, ongoing cellular changes, and targeting mTOR in MTLE may provide new pathways for the medical therapy of epilepsy.
Abstract: Summary Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates basic cellular processes, including development and growth. Mutations in mTOR cause tuberous sclerosis complex (TSC), a condition that is characterized by developmental brain malformations (cortical tubers) and epilepsy. Although considerable insight has been gained recently into the pathologic dysfunction of mTOR in tubers in TSC-related epilepsy, data on the mTOR cascade in mesial temporal lobe epilepsy (MTLE) are lacking. Immunohistochemical investigation with confocal microscopy was performed to evaluate mTOR cascade and to correlate its activity with cellular alterations observed in surgically resected samples of human neocortex and hippocampus in MTLE. We compared results in human tissue to findings in the rat pilocarpine model of sclerotic MTLE. In nonsclerotic and control hippocampus, many neurons in the CA1 subfield expressed high levels of phospho-S6 (p-S6), a reliable marker of mTOR activation. In nonsclerotic and control hippocampus, as well as in magnetic resonance imaging (MRI) normal human neocortex, protoplasmic astrocytes did not express p-S6. In contrast, in sclerotic hippocampus, prominent p-S6 immunostaining was observed mainly in astrocytes and microglia located in the areas of neuronal loss and astrogliosis, whereas neurons in preserved areas of CA1 expressed significantly lower levels of p-S6 immunopositivity than neurons in nonsclerotic or control CA1 subfields. In surgically resected neocortex with chronic astroglial scar tissue, only microglia revealed moderate p-S6 immunoreactivity. Different from human sclerotic epileptic hippocampus, astrogliosis in the chronic rat pilocarpine model of epilepsy was not characterized by glial cells with mTOR activation. The mTOR cascade is activated in astroglial cells in sclerotic MTLE, but not in astrocytes in chronic neocortical scarring or in the pilocarpine model of MTLE. These findings suggest that the astroglial “scar” in sclerotic MTLE has active, ongoing cellular changes. Targeting mTOR in MTLE may provide new pathways for the medical therapy of epilepsy.

56 citations

Journal ArticleDOI
TL;DR: It is proposed that Alzheimer's disease copathology is one of several likely pathological contributors to clinical heterogeneity of Lewy body disorders, and that such pathology can be assessed in vivo.
Abstract: PD, PD with dementia, and dementia with Lewy bodies are clinical syndromes characterized by the neuropathological accumulation of alpha-synuclein in the CNS that represent a clinicopathological spectrum known as Lewy body disorders. These clinical entities have marked heterogeneity of motor and nonmotor symptoms with highly variable disease progression. The biological basis for this clinical heterogeneity remains poorly understood. Previous attempts to subtype patients within the spectrum of Lewy body disorders have centered on clinical features, but converging evidence from studies of neuropathology and ante mortem biomarkers, including CSF, neuroimaging, and genetic studies, suggest that Alzheimer's disease beta-amyloid and tau copathology strongly influence clinical heterogeneity and prognosis in Lewy body disorders. Here, we review previous clinical biomarker and autopsy studies of Lewy body disorders and propose that Alzheimer's disease copathology is one of several likely pathological contributors to clinical heterogeneity of Lewy body disorders, and that such pathology can be assessed in vivo. Future work integrating harmonized assessments and genetics in PD, PD with dementia, and dementia with Lewy bodies patients followed to autopsy will be critical to further refine the classification of Lewy body disorders into biologically distinct endophenotypes. This approach will help facilitate clinical trial design for both symptomatic and disease-modifying therapies to target more homogenous subsets of Lewy body disorders patients with similar prognosis and underlying biology. © 2019 International Parkinson and Movement Disorder Society.

53 citations


Cited by
More filters
Journal Article
TL;DR: The International Parkinson and Movement Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson9s disease as discussed by the authors have been proposed for clinical diagnosis, which are intended for use in clinical research, but may also be used to guide clinical diagnosis.
Abstract: Objective To present the International Parkinson and Movement Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson9s disease. Background Although several diagnostic criteria for Parkinson9s disease have been proposed, none have been officially adopted by an official Parkinson society. Moreover, the commonest-used criteria, the UK brain bank, were created more than 25 years ago. In recognition of the lack of standard criteria, the MDS initiated a task force to design new diagnostic criteria for clinical Parkinson9s disease. Methods/Results The MDS-PD Criteria are intended for use in clinical research, but may also be used to guide clinical diagnosis. The benchmark is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise. Although motor abnormalities remain central, there is increasing recognition of non-motor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the MDS-PD Criteria retain motor parkinsonism as the core disease feature, defined as bradykinesia plus rest tremor and/or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies upon three categories of diagnostic features; absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of PD diagnosis). Two levels of certainty are delineated: Clinically-established PD (maximizing specificity at the expense of reduced sensitivity), and Probable PD (which balances sensitivity and specificity). Conclusion The MDS criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, criteria will need continuous revision to accommodate these advances. Disclosure: Dr. Postuma has received personal compensation for activities with Roche Diagnostics Corporation and Biotie Therapies. Dr. Berg has received research support from Michael J. Fox Foundation, the Bundesministerium fur Bildung und Forschung (BMBF), the German Parkinson Association and Novartis GmbH.

1,655 citations

13 Jul 2017
TL;DR: It is demonstrated that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.
Abstract: Alzheimer’s disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4–3.5 A resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer’s disease. Filament cores are made of two identical protofilaments comprising residues 306–378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. High-resolution structures of tau filaments shed light on the ultrastructure of neurofibrillary lesions in Alzheimer’s disease. Alzheimer's disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. The lesions are made of paired helical and straight tau filaments (PHFs and SFs, respectively). Different tau filaments characterize other neurodegenerative diseases, suggesting that molecular conformers of aggregated tau underlie human tauopathies. No high-resolution structures of tau filaments are currently available. Here, Sjors Scheres and colleagues present cryo-electron microscopy (cryo-EM) maps at 3.5 A resolution and corresponding atomic models of PHFs and SFs from the brain of an individual with Alzheimer's disease. Their results show that cryo-EM enables atomic characterization of amyloid filaments from patient-derived material and could be used to study a range of neurodegenerative diseases.

652 citations

01 Jan 1997
TL;DR: In this paper, a novel autosomal dominant disease named familial ''multiple system tauopathy with presenile dementia'' was described, which is charac- terized by abundant fibrillary deposits of tau protein in both neurons and glial cells.
Abstract: Neurofibrillary lesions made of hyperphos- phorylated microtubule-associated protein tau constitute not only one of the defining neuropathological features of Alzhei- mer disease but also are present in a number of other neurodegenerativediseaseswithdementia.Herewedescribea novel autosomal dominant disease named familial ''multiple system tauopathy with presenile dementia,'' which is charac- terized by abundant fibrillary deposits of tau protein in both neurons and glial cells. There are no detectable deposits of b-amyloid. The tau deposits are in the form of twisted filaments that differ in diameter and periodicity from the paired helical filaments of Alzheimer disease. They are stainedbybothphosphorylation-independentand-dependent anti-tau antibodies. Moreover, tau immunoreactivity coexists with heparan sulfate in affected nerve and glial cells. Tau protein extracted from filaments of familial multiple system tauopathy with presenile dementia shows a minor 72-kDa band and two major bands of 64 and 68 kDa that contain mainly hyperphosphorylated four-repeat tau isoforms of 383 and 412 amino acids.

291 citations

Journal ArticleDOI
TL;DR: A comprehensive view ofmTOR in the nervous system is provided, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of m TOR to nervous system diseases.

282 citations

Journal ArticleDOI
29 Sep 2021-Nature
TL;DR: In this paper, the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold, which is similar to those from argyrophilic grain disease (AGD).
Abstract: The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer’s disease1,2, Pick’s disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer’s disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities—as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP. Cryo-electron microscopy structures of tau filaments from progressive supranuclear palsy and other tauopathies reveal new filament conformations, and suggest that tauopathies can be classified on several different levels according to their filament folds.

249 citations