scispace - formally typeset
Search or ask a question
Author

David G. Watson

Bio: David G. Watson is an academic researcher from University of Cambridge. The author has contributed to research in topics: Bond length & Palladium. The author has an hindex of 13, co-authored 49 publications receiving 10129 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The average lengths of bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and l in organic compounds are reported in this article.
Abstract: The average lengths of bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and l in organic compounds are reported.

6,649 citations

Journal ArticleDOI
TL;DR: The CSD itself acts as a computerized depository for large-volume numerical results for some 30 journals and may conveniently be categorized according to its "dimensionality", as described below and illustrated in Figure 1.
Abstract: ed, together with any associated supplementary (deposited) data. The CSD itself acts as a computerized depository for large-volume numerical results for some 30 journals. A total of 584 primary sources are now referenced in the CSD, of which 74 are regularly scanned in-house to provide ca. 80% of current input. Remaining references are located via a scan of secondary sources, particularly Chemical Abstracts. Each entry in the CSD relates to a specific crystal structure determination of a specific chemical compound. Each entry is identified by a CSD reference code (REFCODE). This consists of eight characters: the first six are alphabetic and identify the chemical compound (initially assigned as a mnemonic of the compound name, now generated automatically for new compounds), the last two characters are digits which trace the publication history and define (a) whether the paper is a republication by the same authors (perhaps reporting an improved coordinate set) or (b) whether the paper is a redetermination by a different set of authors. The information recorded for each entry may conveniently be categorized according to its "dimensionality", as described below and illustrated in Figure 1. 1 D information consists of bibliographic and chemical text strings, together with certain individual numeric items: comBATCH OR VERSION 4 GRAPHICS VERSION 4 GRAPHICS

1,205 citations

Journal ArticleDOI
TL;DR: In this paper, the average lengths for metal-ligand bonds are reported, together with some intraligand distances, for complexes of the d-and f-block metals, for 325 different bond types involving metal atoms bonded to H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, or I atoms of the ligands.
Abstract: Average lengths for metal–ligand bonds are reported, together with some intraligand distances, for complexes of the d- and f-block metals. Mean values are presented for 325 different bond types involving metal atoms bonded to H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, or I atoms of the ligands.

1,019 citations

Book ChapterDOI
TL;DR: Mean bond lengths for organic compounds, derived from the Cambridge Structural Database, are tabulated for 625 different bond types involving the elements C, H, N, O, B, F, P, S, Cl, As, Se, Br, Te and I Associated statistical information characterizes each of the distributions, which are derived from both X-ray and neutron diffraction data as discussed by the authors.
Abstract: Mean bond lengths for organic compounds, derived from the Cambridge Structural Database, are tabulated for 625 different bond types involving the elements C, H, N, O, B, F, P, S, Cl, As, Se, Br, Te and I Associated statistical information characterizes each of the distributions, which are derived from both X-ray and neutron diffraction data

170 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals.
Abstract: New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volume...

13,164 citations

Journal ArticleDOI
TL;DR: The Cambridge Structural Database now contains data for more than a quarter of a million small-molecule crystal structures, and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.
Abstract: The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500000 crystal structures by the year 2010.

9,865 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: The Protein Data Bank is a computer-based archival file for macromolecular structures that stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies.

7,983 citations