scispace - formally typeset
Search or ask a question
Author

David H. Sharp

Bio: David H. Sharp is an academic researcher from Princeton University. The author has contributed to research in topics: Theory of relativity & Variational principle. The author has an hindex of 5, co-authored 5 publications receiving 1461 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Relativistic gravitational collapse equations assuming spherical symmetry, adiabatic flow and pressure gradient forces were proposed in this paper, where spherical symmetry was assumed to be a function of the density.
Abstract: Relativistic gravitational collapse equations assuming spherical symmetry, adiabatic flow and pressure gradient forces

1,442 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the possibility of dynamical enhancement of SU(3) symmetry breaking in baryon couplings and found that certain patterns of symmetry breaking are enhanced and tend to dominate.
Abstract: In a recent paper, we considered the possibility of dynamical enhancement of SU(3) symmetry breaking in baryon couplings. It was found that certain patterns of symmetry breaking are enhanced and tend to dominate; the results were presented and compared with experiment. In the present companion paper, we explain in detail the methods by which these conclusions were obtained and give a more complete summery of the numerical results.

25 citations

Journal ArticleDOI
TL;DR: In this article, a general bootstrap theory of octet enhancement in the strong, electromagnetic, and (parity-conserving) weak violations of SU(3) symmetry has been proposed.
Abstract: In a recent series of publications,(1-4) a general "bootstrap" theory of octet enhancement in the strong, electromagnetic, and (parity-conserving) weak violations of SU(3) symmetry has been proposed. The theory was successfully applied(4) to the strong and electromagnetic mass splittings in the 1/2+ octet and the 3/2+ decuplet of baryons.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Various applications of f(R) theories to cosmology and gravity — such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds are reviewed.
Abstract: Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.

3,375 citations

Journal ArticleDOI
TL;DR: In this paper, a review of different dark energy cosmologies for different fluids is presented, and their properties are also explored, and special attention is paid to the equivalence of different models.
Abstract: We review different dark energy cosmologies. In particular, we present the ΛCDM cosmology, Little Rip and Pseudo-Rip universes, the phantom and quintessence cosmologies with Type I, II, III and IV finite-time future singularities and non-singular dark energy universes. In the first part, we explain the ΛCDM model and well-established observational tests which constrain the current cosmic acceleration. After that, we investigate the dark fluid universe where a fluid has quite general equation of state (EoS) [including inhomogeneous or imperfect EoS]. All the above dark energy cosmologies for different fluids are explicitly realized, and their properties are also explored. It is shown that all the above dark energy universes may mimic the ΛCDM model currently, consistent with the recent observational data. Furthermore, special attention is paid to the equivalence of different dark energy models. We consider single and multiple scalar field theories, tachyon scalar theory and holographic dark energy as models for current acceleration with the features of quintessence/phantom cosmology, and demonstrate their equivalence to the corresponding fluid descriptions. In the second part, we study another equivalent class of dark energy models which includes F(R) gravity as well as F(R) Hořava-Lifshitz gravity and the teleparallel f(T) gravity. The cosmology of such models representing the ΛCDM-like universe or the accelerating expansion with the quintessence/phantom nature is described. Finally, we approach the problem of testing dark energy and alternative gravity models to general relativity by cosmography. We show that degeneration among parameters can be removed by accurate data analysis of large data samples and also present the examples.

1,552 citations

Journal ArticleDOI
TL;DR: In this article, a review of different dark energy cosmologies is presented, including the Lambda$CDM cosmology, Little Rip and Pseudo-Rip universes, the phantom and quintessence cosmology with Type I, II, III and IV finite-time future singularities and non-singular dark energy universes.
Abstract: We review different dark energy cosmologies. In particular, we present the $\Lambda$CDM cosmology, Little Rip and Pseudo-Rip universes, the phantom and quintessence cosmologies with Type I, II, III and IV finite-time future singularities and non-singular dark energy universes. In the first part, we explain the $\Lambda$CDM model and well-established observational tests which constrain the current cosmic acceleration. After that, we investigate the dark fluid universe where a fluid has quite general equation of state (EoS) [including inhomogeneous or imperfect EoS]. All the above dark energy cosmologies for different fluids are explicitly realized, and their properties are also explored. It is shown that all the above dark energy universes may mimic the $\Lambda$CDM model currently, consistent with the recent observational data. Furthermore, special attention is paid to the equivalence of different dark energy models. We consider single and multiple scalar field theories, tachyon scalar theory and holographic dark energy as models for current acceleration with the features of quintessence/phantom cosmology, and demonstrate their equivalence to the corresponding fluid descriptions. In the second part, we study another equivalent class of dark energy models which includes $F(R)$ gravity as well as $F(R)$ Hořava-Lifshitz gravity and the teleparallel $f(T)$ gravity. The cosmology of such models representing the $\Lambda$CDM-like universe or the accelerating expansion with the quintessence/phantom nature is described. Finally, we approach the problem of testing dark energy and alternative gravity models to general relativity by cosmography. We show that degeneration among parameters can be removed by accurate data analysis of large data samples and also present the examples.

1,467 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations and opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy.
Abstract: We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of the Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation — a background where a scalar field has a constant velocity, = M2. The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, ρ = −p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation ω2 ~ 4/M2. If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and anti-gravitate. The newtonian potential is modified with an oscillatory behavior starting at the distance scale MPl/M2 and the time scale MPl2/M3. This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy.

1,104 citations

Journal ArticleDOI
TL;DR: In this paper, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description.
Abstract: Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable for quantization ventures and cosmological applications.

969 citations