scispace - formally typeset
Search or ask a question
Author

David H. Staelin

Bio: David H. Staelin is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Advanced Microwave Sounding Unit & Interferometry. The author has an hindex of 35, co-authored 137 publications receiving 5741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, it is expected the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.
Abstract: The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track scanning temperature and humidity sounding system on the Aqua satellite of the Earth Observing System (EOS). AIRS is an infrared spectrometer/radiometer that covers the 3.7-15.4-/spl mu/m spectral range with 2378 spectral channels. AMSU is a 15-channel microwave radiometer operating between 23 and 89 GHz. HSB is a four-channel microwave radiometer that makes measurements between 150 and 190 GHz. In addition to supporting the National Aeronautics and Space Administration's interest in process study and climate research, AIRS is the first hyperspectral infrared radiometer designed to support the operational requirements for medium-range weather forecasting of the National Ocean and Atmospheric Administration's National Centers for Environmental Prediction (NCEP) and other numerical weather forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better than 1 K in the lower troposphere under clear and partly cloudy conditions. This paper presents an overview of the science objectives, AIRS/AMSU/HSB data products, retrieval algorithms, and the ground-data processing concepts. The EOS Aqua was launched on May 4, 2002 from Vandenberg AFB, CA, into a 705-km-high, sun-synchronous orbit. Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, which has by now been verified during on-orbit testing, we expect the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.

1,413 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the performance of AIRS and examine how it is meeting its operational and research objectives based on the experience of more than 2 years with AIRS data.
Abstract: This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

620 citations

Journal ArticleDOI
TL;DR: An exact derivation of an optimal lapped orthogonal transform (LOT) is presented, related to the discrete cosine transform (DCT) in such a way that a fast algorithm for a nearly optimal LOT is derived.
Abstract: An exact derivation of an optimal lapped orthogonal transform (LOT) is presented. The optimal LOT is related to the discrete cosine transform (DCT) in such a way that a fast algorithm for a nearly optimal LOT is derived. Compared to the DCT, the fast LOT requires about 20-30% more computations, mostly additions. An image coding example demonstrates the effectiveness of the LOT in reducing blocking effects; the LOT actually leads to slightly smaller signal reconstruction errors than does the DCT. >

556 citations

Journal Article
TL;DR: The Mark III interferometer as discussed by the authors is an operational long baseline stellar interferer on Mt. Wilson with four-possible baseline configurations from 9m NE-SW to 20m N-S.
Abstract: The Mark III interferometer is an operational long baseline stellar interferometer on Mt. Wilson with four-possible baseline configurations from 9m NE-SW to 20m N-S. The interferometer was designed to be a highly automated astronomical instrument to measure stellar positions and diameters to a magnitude limit of seven. Initial fringe observations were made in September 1986 with a 12-m N-S baseline. In the following months, semi-automated astrometric and stellar diameter measurements were also made. This paper describes the hardware and software components of the instrument and its operational characteristics. The interferometer has several novel features. One is the use of optimal estimation and control algorithms (e.g. Kalman filters) in the control loops. Another is the ability to operate both as a closed-loop phased interferometer and eventually as an open-loop or absolute coherent interferometer. High thermal stability and mechanical accuracy should permit the instrument to point blind at an astronomical object and maintain optical path equality to within the limits set by the atmosphere. In this absolute interferometric mode of operation, it should be possible to observe faint astronomical objects that are too dim for phase tracking. In theory, measurements of amplitude, group delay, and closure phase will be possible to 14 mag.

141 citations

Journal ArticleDOI
04 Jul 1986-Science
TL;DR: Dynamically evolving radio events of various kinds embedded in these emissions suggest a Uranian magnetosphere rich in magnetohydrodynamic phenomena.
Abstract: Voyager 2 detected continuous radio signals in the 40-100 kHz interval starting from 5 days before passage of Uranus. The radio signals reached 800 kHz within 4 days of closest approach and continued throughout the outward bound phase of flight. The signals were modulated with a period close to 17.24 days, the same period calculated for the rotation of the Uranus magnetosphere with other spacecraft data. The planet was also found to have an off-center magnetic field, and radio signals were strongest when the dipole center was on the nightside of Uranus. Dynamic spectral and burst events which were recorded indicated that Uranus, like the earth, has a strongly defined plasmasphere. It moves under the control of magnetic force tubes that interact with the magnetosphere boundary, producing a variety of MHD phenomena.

135 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations

Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal ArticleDOI
TL;DR: The designed methodology effectively satisfies the three objectives of design science research methodology and has the potential to help aid the acceptance of DS research in the IS discipline.
Abstract: The paper motivates, presents, demonstrates in use, and evaluates a methodology for conducting design science (DS) research in information systems (IS). DS is of importance in a discipline oriented to the creation of successful artifacts. Several researchers have pioneered DS research in IS, yet over the past 15 years, little DS research has been done within the discipline. The lack of a methodology to serve as a commonly accepted framework for DS research and of a template for its presentation may have contributed to its slow adoption. The design science research methodology (DSRM) presented here incorporates principles, practices, and procedures required to carry out such research and meets three objectives: it is consistent with prior literature, it provides a nominal process model for doing DS research, and it provides a mental model for presenting and evaluating DS research in IS. The DS process includes six steps: problem identification and motivation, definition of the objectives for a solution, design and development, demonstration, evaluation, and communication. We demonstrate and evaluate the methodology by presenting four case studies in terms of the DSRM, including cases that present the design of a database to support health assessment methods, a software reuse measure, an Internet video telephony application, and an IS planning method. The designed methodology effectively satisfies the three objectives and has the potential to help aid the acceptance of DS research in the IS discipline.

5,420 citations

Book
01 Mar 1995
TL;DR: Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding and developed the theory in both continuous and discrete time.
Abstract: First published in 1995, Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding. The book developed the theory in both continuous and discrete time, and presented important applications. During the past decade, it filled a useful need in explaining a new view of signal processing based on flexible time-frequency analysis and its applications. Since 2007, the authors now retain the copyright and allow open access to the book.

2,793 citations