scispace - formally typeset
Search or ask a question
Author

David Harel

Bio: David Harel is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Dynamic logic (modal logic) & Reactive system. The author has an hindex of 73, co-authored 370 publications receiving 31510 citations. Previous affiliations of David Harel include Bar-Ilan University & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is intended to demonstrate here that statecharts counter many of the objections raised against conventional state diagrams, and thus appear to render specification by diagrams an attractive and plausible approach.

7,184 citations

Book
01 Jan 2000
TL;DR: This book provides the first comprehensive introduction to Dynamic Logic, a system of remarkable unity that is theoretically rich as well as of practical value.
Abstract: From the Publisher: Among the many approaches to formal reasoning about programs, Dynamic Logic enjoys the singular advantage of being strongly related to classical logic. Its variants constitute natural generalizations and extensions of classical formalisms. For example, Propositional Dynamic Logic (PDL) can be described as a blend of three complementary classical ingredients: propositional calculus, modal logic, and the algebra of regular events. In First-Order Dynamic Logic (DL), the propositional calculus is replaced by classical first-order predicate calculus. Dynamic Logic is a system of remarkable unity that is theoretically rich as well as of practical value. It can be used for formalizing correctness specifications and proving rigorously that those specifications are met by a particular program. Other uses include determining the equivalence of programs, comparing the expressive power of various programming constructs, and synthesizing programs from specifications. This book provides the first comprehensive introduction to Dynamic Logic. It is divided into three parts. The first part reviews the appropriate fundamental concepts of logic and computability theory and can stand alone as an introduction to these topics. The second part discusses PDL and its variants, and the third part discusses DL and its variants. Examples are provided throughout, and exercises and a short historical section are included at the end of each chapter.

1,631 citations

Journal ArticleDOI
TL;DR: The higraph, a general kind of diagramming object, forms a visual formalism of topological nature that is suited for a wide array of applications to databases, knowledge representation, and the behavioral specification of complex concurrent systems using the higraph-based language of statecharts.
Abstract: The higraph, a general kind of diagramming object, forms a visual formalism of topological nature. Higraphs are suited for a wide array of applications to databases, knowledge representation, and, most notably, the behavioral specification of complex concurrent systems using the higraph-based language of statecharts.

1,332 citations

Journal ArticleDOI
TL;DR: The main novelty of STATEMATE is in the fact that it `understands` the entire descriptions perfectly, to the point of being able to analyze them for crucial dynamic properties, to carry out rigorous animated executions and simulations of the described system, and to create running code automatically.
Abstract: STATEMATE is a set of tools, with a heavy graphical orientation, intended for the specification, analysis, design, and documentation of large and complex reactive systems. It enables a user to prepare, analyze, and debug diagrammatic, yet precise, descriptions of the system under development from three interrelated points of view, capturing structure, functionality, and behavior. These views are represented by three graphical languages, the most intricate of which is the language of statecharts, used to depict reactive behavior over time. In addition to the use of statecharts, the main novelty of STATEMATE is in the fact that it understands the entire descriptions perfectly, to the point of being able to analyze them for crucial dynamic properties, to carry out rigorous executions and simulations of the described system, and to create running code automatically. These features are invaluable when it comes to the quality and reliability of the final outcome. >

1,183 citations

Journal ArticleDOI
TL;DR: The semantics of statecharts as implemented in the STATEMATE system is described, which was the first executable semantics defined for the language and has been in use for almost a decade.
Abstract: We describe the semantics of statecharts as implemented in the STATEMATE system. This was the first executable semantics defined for the language and has been in use for almost a decade. In terms of the controversy around whether changes made in a given step should take effect in the current step or in the next one, this semantics adopts the latter approach.

1,139 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations