scispace - formally typeset
Search or ask a question
Author

David Howe

Bio: David Howe is an academic researcher from University of Sheffield. The author has contributed to research in topics: Magnet & Torque. The author has an hindex of 52, co-authored 143 publications receiving 8935 citations.


Papers
More filters
Journal ArticleDOI
30 Apr 2007
TL;DR: In this article, the relative merits of induction, switched reluctance, and permanent-magnet (PM) brushless machines and drives for application in electric, hybrid, and fuel cell vehicles are reviewed.
Abstract: This paper reviews the relative merits of induction, switched reluctance, and permanent-magnet (PM) brushless machines and drives for application in electric, hybrid, and fuel cell vehicles, with particular emphasis on PM brushless machines. The basic operational characteristics and design requirements, viz. a high torque/power density, high efficiency over a wide operating range, and a high maximum speed capability, as well as the latest developments, are described. Permanent-magnet brushless dc and ac machines and drives are compared in terms of their constant torque and constant power capabilities, and various PM machine topologies and their performance are reviewed. Finally, methods for enhancing the PM excitation torque and reluctance torque components and, thereby, improving the torque and power capability, are described

1,091 citations

Journal ArticleDOI
TL;DR: In this article, the design and performance of a magnetic gear, which employs rare-earth magnets, has been described, which simulation studies have shown to have a transmitted torque density exceeding 100 kNm/m/sup 3.
Abstract: Mechanical gearboxes are used extensively to match the operating speed of prime-movers to the requirements of their loads. Although, high system torque densities can be achieved, gear lubrication and cooling are often required, whilst noise, vibration and reliability can be significant issues. The paper describes the design and performance of a magnetic gear, which employs rare-earth magnets, which simulation studies have shown to have a transmitted torque density exceeding 100 kNm/m/sup 3/.

943 citations

Journal ArticleDOI
01 Mar 2004
TL;DR: In this paper, a new magnetic gear topology which combines a highly competitive torque transmission capability and a very high efficiency is described, which is based on the magnetic circuit topology.
Abstract: Magnetic gears offer significant potential advantages compared with mechanical gears, such as reduced maintenance and improved reliability, inherent overload protection, and physical isolation between the input and output shafts. However, to date they have received relatively little attention, probably due to the relatively poor torque transmission capability of the magnetic circuit topologies which have been proposed. A new magnetic gear topology which combines a highly competitive torque transmission capability and a very high efficiency is described.

582 citations

Journal ArticleDOI
01 Jul 2001
TL;DR: In this article, the realisation of Halbach magnetized magnetized brushless machines from pre-magnetised sintered rare earth magnet segments (which approximate the Halbach magnetic distribution and thereby compromise their performance), and as bonded isotropic and anisotropic NdFeB ring magnets (which are subsequently impulse magnetised with a Halbach field distribution), is considered.
Abstract: Permanent magnet brushless machines employing multipole Halbach magnetised rotors are being developed for various applications, since they offer a number of attractive features. Alternative Halbach machine topologies are reviewed, and the realisation of Halbach magnetised magnets from pre-magnetised sintered rare earth magnet segments (which approximate the Halbach magnetisation distribution and thereby compromise their performance), and as bonded isotropic and anisotropic NdFeB ring magnets (which are subsequently impulse magnetised with a Halbach field distribution), is considered. Radial- and axial-field, slotted and slotless, rotary and linear (tubular and planar), and spherical Halbach magnetised brushless machines are described, and potential applications, including a motor/generator for a high-speed flywheel peak power buffer, high-performance linear and rotary servo motors, and passive magnetic bearings are considered.

378 citations

Journal ArticleDOI
06 Dec 2004
TL;DR: In this paper, an improved analytical model for predicting the rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets is presented, which is formulated in polar co-ordinates and based on the calculation of the two-dimensional electromagnetic field in the air gap/magnet regions, with due account of the Eddy current reaction field.
Abstract: An improved analytical model for predicting the rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets is presented. It is formulated in polar co-ordinates and based on the calculation of the two-dimensional electromagnetic field in the airgap/magnet regions, with due account of the eddy current reaction field. It enables the eddy current loss in the permanent magnets and the retaining sleeve, if fitted, to be calculated, and caters for motors having either overlapping or non-overlapping stator windings, as well as any specified load condition. The analysis accounts for both time and space mmf harmonics, but neglects the influence of stator slotting. The model is applied to a brushless DC traction machine in which the rotor loss is due predominantly to time harmonics in the armature reaction field which result from commutation events. The predicted rotor loss is compared with the loss deduced from thermometric measurements and from an analytical magnetostatic model which neglects the eddy current reaction field. Good agreement between predictions and measurements is achieved over the complete operating speed range.

269 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An attempt is made to provide a brief review of the current state of the art in the area of variable-speed drives, addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphases machine designs.
Abstract: Although the concept of variable-speed drives, based on utilization of multiphase machines, dates back to the late 1960s, it was not until the mid- to late 1990s that multiphase drives became serious contenders for various applications. These include electric ship propulsion, locomotive traction, electric and hybrid electric vehicles, ldquomore-electricrdquo aircraft, and high-power industrial applications. As a consequence, there has been a substantial increase in the interest for such drive systems worldwide, resulting in a huge volume of work published during the last ten years. An attempt is made in this paper to provide a brief review of the current state of the art in the area. After addressing the reasons for potential use of multiphase rather than three-phase drives and the available approaches to multiphase machine designs, various control schemes are surveyed. This is followed by a discussion of the multiphase voltage source inverter control. Various possibilities for the use of additional degrees of freedom that exist in multiphase machines are further elaborated. Finally, multiphase machine applications in electric energy generation are addressed.

1,683 citations

Journal ArticleDOI
TL;DR: A detailed overview of the state-of-the-art in multiphase variable-speed motor drives can be found in this article, where the authors provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as the approaches to the design of fault tolerant strategies for post-fault drive operation.
Abstract: The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operation.

1,445 citations

Journal ArticleDOI
TL;DR: An overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies.
Abstract: With ever-increasing concerns on our environment, there is a fast growing interest in electric vehicles (EVs) and hybrid EVs (HEVs) from automakers, governments, and customers. As electric drives are the core of both EVs and HEVs, it is a pressing need for researchers to develop advanced electric-drive systems. In this paper, an overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies. Then, three major research directions of the PM BL drive systems are elaborated, namely, the magnetic-geared outer-rotor PM BL drive system, the PM BL integrated starter-generator system, and the PM BL electric variable-transmission system.

1,281 citations

Journal ArticleDOI
TL;DR: This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, compared of interior versus surface PM machine, and various types of machines.
Abstract: Fractional-slot concentrated-winding (FSCW) synchronous permanent magnet (PM) machines have been gaining interest over the last few years. This is mainly due to the several advantages that this type of windings provides. These include high-power density, high efficiency, short end turns, high slot fill factor particularly when coupled with segmented stator structures, low cogging torque, flux-weakening capability, and fault tolerance. This paper is going to provide a thorough analysis of FSCW synchronous PM machines in terms of opportunities and challenges. This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, comparison of interior versus surface PM machines, and various types of machines. This paper will also provide a summary of the commercial applications that involve FSCW synchronous PM machines.

1,126 citations

Journal ArticleDOI
30 Apr 2007
TL;DR: In this article, the relative merits of induction, switched reluctance, and permanent-magnet (PM) brushless machines and drives for application in electric, hybrid, and fuel cell vehicles are reviewed.
Abstract: This paper reviews the relative merits of induction, switched reluctance, and permanent-magnet (PM) brushless machines and drives for application in electric, hybrid, and fuel cell vehicles, with particular emphasis on PM brushless machines. The basic operational characteristics and design requirements, viz. a high torque/power density, high efficiency over a wide operating range, and a high maximum speed capability, as well as the latest developments, are described. Permanent-magnet brushless dc and ac machines and drives are compared in terms of their constant torque and constant power capabilities, and various PM machine topologies and their performance are reviewed. Finally, methods for enhancing the PM excitation torque and reluctance torque components and, thereby, improving the torque and power capability, are described

1,091 citations