scispace - formally typeset
Search or ask a question
Author

David I. Gibson

Bio: David I. Gibson is an academic researcher from American Museum of Natural History. The author has contributed to research in topics: Animal ecology & Digenea. The author has an hindex of 36, co-authored 305 publications receiving 6589 citations. Previous affiliations of David I. Gibson include Natural History Museum & Oswaldo Cruz Foundation.


Papers
More filters
Journal ArticleDOI
Ward Appeltans1, Shane T. Ahyong2, Shane T. Ahyong3, Gary L. Anderson4, Martin V. Angel5, Tom Artois6, Nicolas Bailly7, Roger N. Bamber, Anthony Barber, Ilse Bartsch8, Annalisa Berta9, Magdalena Błażewicz-Paszkowycz, Phil Bock10, Geoff A. Boxshall11, Christopher B. Boyko12, Simone N. Brandão13, R. A. Bray11, Niel L. Bruce14, Niel L. Bruce15, Stephen D. Cairns16, Tin-Yam Chan17, Lanna Cheng18, Allen Gilbert Collins19, Thomas H. Cribb20, Marco Curini-Galletti21, Farid Dahdouh-Guebas22, Farid Dahdouh-Guebas23, Peter J. F. Davie24, Michael N Dawson25, Olivier De Clerck26, Wim Decock1, Sammy De Grave8, Nicole J. de Voogd27, Daryl P. Domning28, Christian C. Emig, Christer Erséus29, William N. Eschmeyer30, William N. Eschmeyer31, Kristian Fauchald16, Daphne G. Fautin8, Stephen W. Feist32, Charles H. J. M. Fransen27, Hidetaka Furuya33, Óscar García-Álvarez34, Sarah Gerken35, David I. Gibson11, Arjan Gittenberger27, Serge Gofas36, Liza Gómez-Daglio25, Dennis P. Gordon37, Michael D. Guiry38, Francisco Hernandez1, Bert W. Hoeksema27, Russell R. Hopcroft39, Damià Jaume40, Paul M. Kirk41, Nico Koedam23, Stefan Koenemann42, Jürgen B. Kolb43, Reinhardt Møbjerg Kristensen44, Andreas Kroh45, Gretchen Lambert46, David Lazarus47, Rafael Lemaitre16, Matt Longshaw32, Jim Lowry3, Enrique Macpherson40, Laurence P. Madin48, Christopher L. Mah16, Gill Mapstone11, Patsy A. McLaughlin49, Jan Mees1, Jan Mees26, Kenneth Meland50, Charles G. Messing51, Claudia E. Mills46, Tina N. Molodtsova52, Rich Mooi30, Birger Neuhaus47, Peter K. L. Ng53, Claus Nielsen44, Jon L. Norenburg16, Dennis M. Opresko16, Masayuki Osawa54, Gustav Paulay31, William F. Perrin19, John F. Pilger55, Gary C. B. Poore10, P.R. Pugh5, Geoffrey B. Read37, James Davis Reimer56, Marc Rius57, Rosana M. Rocha58, J.I. Saiz-Salinas59, Victor Scarabino, Bernd Schierwater60, Andreas Schmidt-Rhaesa13, Kareen E. Schnabel37, Marilyn Schotte16, Peter Schuchert, Enrico Schwabe, Hendrik Segers61, Caryn Self-Sullivan51, Noa Shenkar62, Volker Siegel, Wolfgang Sterrer8, Sabine Stöhr63, Billie J. Swalla46, Mark L. Tasker64, Erik V. Thuesen65, Tarmo Timm66, M. Antonio Todaro, Xavier Turon40, Seth Tyler67, Peter Uetz68, Jacob van der Land27, Bart Vanhoorne1, Leen van Ofwegen27, Rob W. M. Van Soest27, Jan Vanaverbeke26, Genefor Walker-Smith10, T. Chad Walter16, Alan Warren11, Gary C. Williams30, Simon P. Wilson69, Mark J. Costello70 
Flanders Marine Institute1, University of New South Wales2, Australian Museum3, University of Southern Mississippi4, National Oceanography Centre, Southampton5, University of Hasselt6, WorldFish7, American Museum of Natural History8, San Diego State University9, Museum Victoria10, Natural History Museum11, Dowling College12, University of Hamburg13, James Cook University14, University of Johannesburg15, National Museum of Natural History16, National Taiwan Ocean University17, Scripps Institution of Oceanography18, National Oceanic and Atmospheric Administration19, University of Queensland20, University of Sassari21, Université libre de Bruxelles22, Vrije Universiteit Brussel23, Queensland Museum24, University of California, Merced25, Ghent University26, Naturalis27, Howard University28, University of Gothenburg29, California Academy of Sciences30, Florida Museum of Natural History31, Centre for Environment, Fisheries and Aquaculture Science32, Osaka University33, University of Santiago de Compostela34, University of Alaska Anchorage35, University of Málaga36, National Institute of Water and Atmospheric Research37, National University of Ireland, Galway38, University of Alaska Fairbanks39, Spanish National Research Council40, CABI41, University of Siegen42, Massey University43, University of Copenhagen44, Naturhistorisches Museum45, University of Washington46, Museum für Naturkunde47, Woods Hole Oceanographic Institution48, Western Washington University49, University of Bergen50, Nova Southeastern University51, Shirshov Institute of Oceanology52, National University of Singapore53, Shimane University54, Agnes Scott College55, University of the Ryukyus56, University of California, Davis57, Federal University of Paraná58, University of the Basque Country59, University of Veterinary Medicine Hanover60, Royal Belgian Institute of Natural Sciences61, Tel Aviv University62, Swedish Museum of Natural History63, Joint Nature Conservation Committee64, The Evergreen State College65, Estonian University of Life Sciences66, University of Maine67, Virginia Commonwealth University68, Trinity College, Dublin69, University of Auckland70
TL;DR: The first register of the marine species of the world is compiled and it is estimated that between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely.

822 citations

Book
14 May 2002
TL;DR: This volume covers five superfamilies within the Order Plagiorchiida and the family Didymozoidae, with keys for their identification at the family, subfamily and generic levels.
Abstract: This is the third and final volume of the "Keys to the Trematoda", a series on the systematics and identification of the Class Trematoda. This volume covers five superfamilies within the Order Plagiorchiida and the family Didymozoidae, with keys for their identification at the family, subfamily and generic levels. It also includes a key to all digenean superfamilies, including those treated in detail in volumes one and two. Previous volumes dealt with the Subclass Aspidogastrea and Order Strigeida as well as the Order Echinostomida and the first two plagiorchiidan superfamilies.

643 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a novel approach to deal with the problem of plagiarism in advertising: https://www.youtube.com/watch?listen/listen
Abstract: Synopsis 35

169 citations

Journal ArticleDOI
TL;DR: The morphological and morphometric analyses revealed the presence of morphological features that differed among the 3 biological species, and the tree topologies support the finding that A. simplex (s.s.), A. pegreffii, and A. berlandi n.
Abstract: Numerous specimens of the 3 sibling species of the Anisakis simplex species complex (A. pegreffii, A. simplex (senso stricto)), and A. simplex sp. C) recovered from cetacean species stranded within the known geographical ranges of these nematodes were studied morphologically and genetically. The genetic characterization was performed on diagnostic allozymes and sequences analysis of nuclear (internal transcribed spacer [ITS] of ribosomal [r]DNA) and mitochondrial (mitochondrial [mt]DNA cox2 and rrnS) genes. These markers showed (1) the occurrence of sympatry of the 2 sibling species A. pegreffii and A. simplex sp. C in the same individual host, the pilot whale, Globicephala melas Traill, from New Zealand waters; (2) the identification of specimens of A. pegreffii in the striped dolphin, Stenella coeruleoalba (Meyen), from the Mediterranean Sea; and (3) the presence of A. simplex (s.s.) in the pilot whale and the minke whale, Balaenoptera acutorostrata Lacepede, from the northeastern Atlantic wa...

166 citations

Book
28 Oct 2008
TL;DR: This volume covers five superfamilies with the Order Plagiorchiida and the family Didymozoidae, with the keys for their identification at the family, subfamily and generic levels.
Abstract: Keys to the Trematoda volume 3 , Keys to the Trematoda volume 3 , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

150 citations


Cited by
More filters
Journal ArticleDOI
30 May 2014-Science
TL;DR: The biodiversity of eukaryote species and their extinction rates, distributions, and protection is reviewed, and what the future rates of species extinction will be, how well protected areas will slow extinction Rates, and how the remaining gaps in knowledge might be filled are reviewed.
Abstract: Background A principal function of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is to “perform regular and timely assessments of knowledge on biodiversity.” In December 2013, its second plenary session approved a program to begin a global assessment in 2015. The Convention on Biological Diversity (CBD) and five other biodiversity-related conventions have adopted IPBES as their science-policy interface, so these assessments will be important in evaluating progress toward the CBD’s Aichi Targets of the Strategic Plan for Biodiversity 2011–2020. As a contribution toward such assessment, we review the biodiversity of eukaryote species and their extinction rates, distributions, and protection. We document what we know, how it likely differs from what we do not, and how these differences affect biodiversity statistics. Interestingly, several targets explicitly mention “known species”—a strong, if implicit, statement of incomplete knowledge. We start by asking how many species are known and how many remain undescribed. We then consider by how much human actions inflate extinction rates. Much depends on where species are, because different biomes contain different numbers of species of different susceptibilities. Biomes also suffer different levels of damage and have unequal levels of protection. How extinction rates will change depends on how and where threats expand and whether greater protection counters them. Different visualizations of species biodiversity. ( A ) The distributions of 9927 bird species. ( B ) The 4964 species with smaller than the median geographical range size. ( C ) The 1308 species assessed as threatened with a high risk of extinction by BirdLife International for the Red List of Threatened Species of the International Union for Conservation of Nature. ( D ) The 1080 threatened species with less than the median range size. (D) provides a strong geographical focus on where local conservation actions can have the greatest global impact. Additional biodiversity maps are available at www.biodiversitymapping.org. Advances Recent studies have clarified where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. These data are increasingly accessible, bringing greater transparency to science and governance. Taxonomic catalogs of plants, terrestrial vertebrates, freshwater fish, and some marine taxa are sufficient to assess their status and the limitations of our knowledge. Most species are undescribed, however. The species we know best have large geographical ranges and are often common within them. Most known species have small ranges, however, and such species are typically newer discoveries. The numbers of known species with very small ranges are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. We expect unknown species to share these characteristics. Current rates of extinction are about 1000 times the background rate of extinction. These are higher than previously estimated and likely still underestimated. Future rates will depend on many factors and are poised to increase. Finally, although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Outlook Progress on assessing biodiversity will emerge from continued expansion of the many recently created online databases, combining them with new global data sources on changing land and ocean use and with increasingly crowdsourced data on species’ distributions. Examples of practical conservation that follow from using combined data in Colombia and Brazil can be found at www.savingspecies.org and www.youtube.com/watch?v=R3zjeJW2NVk.

2,360 citations

01 Jan 1944
TL;DR: The only previously known species of Myrsidea from bulbuls, M. warwicki ex Ixos philippinus, is redescribed and sixteen new species are described; they and their type hosts are described.
Abstract: We redescribe the only previously known species of Myrsidea from bulbuls, M. pycnonoti Eichler. Sixteen new species are described; they and their type hosts are: M. phillipsi ex Pycnonotus goiavier goiavier (Scopoli), M. gieferi ex P. goiavier suluensis Mearns, M. kulpai ex P. flavescens Blyth, M. finlaysoni ex P. finlaysoni Strickland, M. kathleenae ex P. cafer (L.), M. warwicki ex Ixos philippinus (J. R. Forster), M. mcclurei ex Microscelis amaurotis (Temminck), M. zeylanici ex P. zeylanicus (Gmelin), M. plumosi ex P. plumosus Blyth, M. eutiloti ex P. eutilotus (Jardine and Selby), M. adamsae ex P. urostictus (Salvadori), M. ochracei ex Criniger ochraceus F. Moore, M. borbonici ex Hypsipetes borbonicus (J. R. Forster), M. johnsoni ex P. atriceps (Temminck), M. palmai ex C. ochraceus, and M. claytoni ex P. eutilotus. A key is provided for the identification of these 17 species.

1,756 citations

Journal ArticleDOI
Colomban de Vargas1, Colomban de Vargas2, Stéphane Audic1, Stéphane Audic2, Nicolas Henry1, Nicolas Henry2, Johan Decelle2, Johan Decelle1, Frédéric Mahé2, Frédéric Mahé3, Frédéric Mahé1, Ramiro Logares4, Enrique Lara, Cédric Berney2, Cédric Berney1, Noan Le Bescot1, Noan Le Bescot2, Ian Probert2, Ian Probert1, Margaux Carmichael2, Margaux Carmichael1, Margaux Carmichael5, Julie Poulain6, Sarah Romac1, Sarah Romac2, Sébastien Colin2, Sébastien Colin1, Sébastien Colin5, Jean-Marc Aury6, Lucie Bittner, Samuel Chaffron7, Samuel Chaffron8, Micah Dunthorn3, Stefan Engelen6, Olga Flegontova9, Olga Flegontova10, Lionel Guidi2, Lionel Guidi1, Aleš Horák10, Aleš Horák9, Olivier Jaillon6, Olivier Jaillon11, Olivier Jaillon2, Gipsi Lima-Mendez7, Gipsi Lima-Mendez8, Julius Lukeš10, Julius Lukeš9, Julius Lukeš12, Shruti Malviya5, Raphael Morard2, Raphael Morard13, Raphael Morard1, Matthieu Mulot, Eleonora Scalco14, Raffaele Siano15, Flora Vincent5, Flora Vincent7, Adriana Zingone14, Céline Dimier1, Céline Dimier2, Céline Dimier5, Marc Picheral2, Marc Picheral1, Sarah Searson1, Sarah Searson2, Stefanie Kandels-Lewis16, Tara Oceans Coordinators17, Silvia G. Acinas4, Peer Bork18, Peer Bork16, Chris Bowler5, Gabriel Gorsky1, Gabriel Gorsky2, Nigel Grimsley2, Nigel Grimsley19, Pascal Hingamp20, Daniele Iudicone14, Fabrice Not1, Fabrice Not2, Hiroyuki Ogata17, Stephane Pesant13, Jeroen Raes7, Jeroen Raes8, Michael E. Sieracki21, Michael E. Sieracki22, Sabrina Speich5, Sabrina Speich23, Lars Stemmann1, Lars Stemmann2, Shinichi Sunagawa16, Jean Weissenbach6, Jean Weissenbach2, Jean Weissenbach11, Patrick Wincker6, Patrick Wincker2, Patrick Wincker11, Eric Karsenti5, Eric Karsenti16 
22 May 2015-Science
TL;DR: Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies.
Abstract: Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.

1,378 citations

Journal ArticleDOI
TL;DR: In this article, the authors used complete small subunit ribosomal RNA gene (ssrDNA) and partial (D1-D3) large subunit RIBG sequences to estimate the phylogeny of the Digenea via maximum parsimony and Bayesian inference.

777 citations