scispace - formally typeset
Search or ask a question
Author

David I Shuman

Bio: David I Shuman is an academic researcher from Macalester College. The author has contributed to research in topics: Signal processing & Adjacency matrix. The author has an hindex of 22, co-authored 45 publications receiving 5078 citations. Previous affiliations of David I Shuman include University of Michigan & École Polytechnique Fédérale de Lausanne.

Papers
More filters
Journal ArticleDOI
TL;DR: The field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process high-dimensional data on graphs as discussed by the authors, which are the analogs to the classical frequency domain and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs.
Abstract: In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogs to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.

3,475 citations

Journal ArticleDOI
TL;DR: This tutorial overview outlines the main challenges of the emerging field of signal processing on graphs, discusses different ways to define graph spectral domains, which are the analogs to the classical frequency domain, and highlights the importance of incorporating the irregular structures of graph data domains when processing signals on graphs.
Abstract: In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogues to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting, and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.

606 citations

Posted Content
TL;DR: This document introduces the Graph Signal Processing Toolbox (GSPBox) a framework that can be used to tackle graph related problems with a signal processing approach and explains the structure and the organization of this software.
Abstract: This document introduces the Graph Signal Processing Toolbox (GSPBox) a framework that can be used to tackle graph related problems with a signal processing approach. It explains the structure and the organization of this software. It also contains a general description of the important modules.

286 citations

Journal ArticleDOI
TL;DR: In this article, the authors generalize windowed Fourier analysis to the graph domain and design dictionaries and transform methods to identify and exploit structure in signals on weighted graphs, but they need to account for the intrinsic geometric structure of the underlying graph data domain.

274 citations

Posted Content
TL;DR: This paper generalizes one of the most important signal processing tools - windowed Fourier analysis - to the graph setting and designs dictionaries and transform methods to identify and exploit structure in signals on weighted graphs.
Abstract: One of the key challenges in the area of signal processing on graphs is to design dictionaries and transform methods to identify and exploit structure in signals on weighted graphs. To do so, we need to account for the intrinsic geometric structure of the underlying graph data domain. In this paper, we generalize one of the most important signal processing tools - windowed Fourier analysis - to the graph setting. Our approach is to first define generalized convolution, translation, and modulation operators for signals on graphs, and explore related properties such as the localization of translated and modulated graph kernels. We then use these operators to define a windowed graph Fourier transform, enabling vertex-frequency analysis. When we apply this transform to a signal with frequency components that vary along a path graph, the resulting spectrogram matches our intuition from classical discrete-time signal processing. Yet, our construction is fully generalized and can be applied to analyze signals on any undirected, connected, weighted graph.

260 citations


Cited by
More filters
Posted Content
TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Abstract: We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes. In a number of experiments on citation networks and on a knowledge graph dataset we demonstrate that our approach outperforms related methods by a significant margin.

15,696 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations

Posted Content
TL;DR: In this article, a spectral graph theory formulation of convolutional neural networks (CNNs) was proposed to learn local, stationary, and compositional features on graphs, and the proposed technique offers the same linear computational complexity and constant learning complexity as classical CNNs while being universal to any graph structure.
Abstract: In this work, we are interested in generalizing convolutional neural networks (CNNs) from low-dimensional regular grids, where image, video and speech are represented, to high-dimensional irregular domains, such as social networks, brain connectomes or words' embedding, represented by graphs. We present a formulation of CNNs in the context of spectral graph theory, which provides the necessary mathematical background and efficient numerical schemes to design fast localized convolutional filters on graphs. Importantly, the proposed technique offers the same linear computational complexity and constant learning complexity as classical CNNs, while being universal to any graph structure. Experiments on MNIST and 20NEWS demonstrate the ability of this novel deep learning system to learn local, stationary, and compositional features on graphs.

4,562 citations