scispace - formally typeset
Search or ask a question
Author

David Iles

Other affiliations: St James's University Hospital
Bio: David Iles is an academic researcher from University of Leeds. The author has contributed to research in topics: Histone & Chromatin. The author has an hindex of 13, co-authored 25 publications receiving 1399 citations. Previous affiliations of David Iles include St James's University Hospital.

Papers
More filters
Journal ArticleDOI
17 Dec 2004-Science
TL;DR: It is demonstrated that hemoxygenase-2 (HO-2) is part of the BK channel complex and enhances channel activity in normoxia, which indicates that HO-2 is an oxygen sensor that controls channel activity during oxygen deprivation.
Abstract: Modulation of calcium-sensitive potassium (BK) channels by oxygen is important in several mammalian tissues, and in the carotid body it is crucial to respiratory control. However, the identity of the oxygen sensor remains unknown. We demonstrate that hemoxygenase-2 (HO-2) is part of the BK channel complex and enhances channel activity in normoxia. Knockdown of HO-2 expression reduced channel activity, and carbon monoxide, a product of HO-2 activity, rescued this loss of function. Inhibition of BK channels by hypoxia was dependent on HO-2 expression and was augmented by HO-2 stimulation. Furthermore, carotid body cells demonstrated HO-2–dependent hypoxic BK channel inhibition, which indicates that HO-2 is an oxygen sensor that controls channel activity during oxygen deprivation.

442 citations

Journal ArticleDOI
TL;DR: The most recent research into mammalian spermatozoal chromatin composition is discussed, supporting the hypothesis that the spermatozoon delivers a novel epigenetic signature to the egg that may be crucial for normal development and some thoughts on why this signature may be required in early embryogenesis.
Abstract: Haploid male germ cells package their DNA into a volume that is typically 10% or less that of a somatic cell nucleus. To achieve this remarkable level of compaction, spermatozoa replace most of their histones with smaller, highly basic arginine and (in eutherians) cysteine rich protamines. One reason for such a high level of compaction is that it may help optimise nuclear shape and hence support the gametes’ swimming ability for the long journey across the female reproductive tract to the oocyte. Super-compaction of the genome may confer additional protection from the effects of genotoxic factors. However, many species including the human retain a fraction of their chromatin in the more relaxed nucleosomal configuration that appears to run counter to the ergonomic, toroidal and repackaging of sperm DNA. Recent research suggests that the composition of this ‘residual’ nucleosomal compartment, a generally overlooked feature of the male gamete, is far more significant and important than previously thought. In this respect, the transport and incorporation of modified paternal histones by the spermatozoon to the zygote has been demonstrated and indicates another potential paternal effect in the epigenetic reprogramming of the zygote following fertilisation that is independent of imprinting status. In this review, the most recent research into mammalian spermatozoal chromatin composition is discussed alongside evidence for conserved, non-randomly located nucleosomal domains in spermatozoal nuclei, all supporting the hypothesis that the spermatozoon delivers a novel epigenetic signature to the egg that may be crucial for normal development. We also provide some thoughts on why this signature may be required in early embryogenesis. Reproduction (2010) 139 287–301

381 citations

Journal ArticleDOI
TL;DR: The results show unequivocally that, in contrast to the endonuclease-resistant sperm chromatin packaged by protamines, regions of increased end onuclease sensitivity are closely associated with gene regulatory regions, including many promoter sequences and sequences recognized by CCCTC-binding factor (CTCF).
Abstract: During the haploid phase of mammalian spermatogenesis, nucleosomal chromatin is ultimately repackaged by small, highly basic protamines to generate an extremely compact, toroidal chromatin architecture that is critical to normal spermatozoal function. In common with several species, however, the human spermatozoon retains a small proportion of its chromatin packaged in nucleosomes. As nucleosomal chromatin in spermatozoa is structurally more open than protamine-packaged chromatin, we considered it likely to be more accessible to exogenously applied endonucleases. Accordingly, we have used this premise to identify a population of endonuclease-sensitive DNA sequences in human and murine spermatozoa. Our results show unequivocally that, in contrast to the endonuclease-resistant sperm chromatin packaged by protamines, regions of increased endonuclease sensitivity are closely associated with gene regulatory regions, including many promoter sequences and sequences recognized by CCCTC-binding factor (CTCF). Similar differential packaging of promoters is observed in the spermatozoal chromatin of both mouse and man. These observations imply the existence of epigenetic marks that distinguish gene regulatory regions in male germ cells and prevent their repackaging by protamines during spermiogenesis. The ontology of genes under the control of endonuclease-sensitive regulatory regions implies a role for this phenomenon in subsequent embryonic development.

286 citations

Journal ArticleDOI
TL;DR: Differences in phenotype severity between RYR1 variants may explain the variability in clinical penetrance of MH during anaesthesia and why some variants have been associated with exercise-induced rhabdomyolysis and heat stroke.
Abstract: Background Malignant hyperthermia (MH) is associated, in the majority of cases, with mutations in RYR1 , the gene encoding the skeletal muscle ryanodine receptor. Our primary aim was to assess whether different RYR1 variants are associated with quantitative differences in MH phenotype. Methods The degree of in vitro pharmacological muscle contracture response and the baseline serum creatine kinase (CK) concentration were used to generate a series of quantitative phenotypes for MH. We then undertook the most extensive RYR1 genotype–phenotype correlation in MH to date using 504 individuals from 204 MH families and 23 RYR1 variants. We also determined the association between a clinical phenotype and both the laboratory phenotype and RYR1 genotype. Results We report a novel correlation between the degree of in vitro pharmacological muscle contracture responses and the onset time of the clinical MH response in index cases ( P P =0.039). The specific RYR1 variant was a significant determinant of the severity of each laboratory phenotype ( P Conclusions The MH phenotype differs significantly with different RYR1 variants. Variants leading to more severe MH phenotype are distributed throughout the gene and tend to lie at relatively conserved sites in the protein. Differences in phenotype severity between RYR1 variants may explain the variability in clinical penetrance of MH during anaesthesia and why some variants have been associated with exercise-induced rhabdomyolysis and heat stroke. They may also inform a mutation screening strategy in cases of idiopathic hyperCKaemia.

99 citations

Journal ArticleDOI
TL;DR: Analysis of data from 130 MH nuclear families suggested that variations in more than one gene may influence MH susceptibility in single families.
Abstract: Malignant hyperthermia (MH) is a potentially lethal disorder triggered in susceptible individuals on exposure to common anaesthetic agents. Crises reflect the consequences of disturbed skeletal muscle calcium homeostasis. MH is an autosomal dominant, genetically heterogeneous trait. Defects in a single major gene have been assumed to determine susceptibility status in individual families. However, in some pedigrees phenotypic and genotypic data are discordant. One explanation, in contrast to the current genetic model, is that susceptibility is dependent upon the effects of more than one gene. Using the transmission disequilibrium test we assessed the involvement of 8 MH candidate loci (RYR1, CACNA1S, CACNA2D1, MHS4 at 3q13.1, MHS6 at 5p, LIPE, DM1, dystrophin) by analysis of data from 130 MH nuclear families. Results suggested that variations in more than one gene may influence MH susceptibility in single families.

70 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The molecular and biochemical characterization of HOs is reviewed, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress, to lay a foundation for potential future clinical applications of these systems.
Abstract: The heme oxygenases, which consist of constitutive and inducible isozymes (HO-1, HO-2), catalyze the rate-limiting step in the metabolic conversion of heme to the bile pigments (i.e., biliverdin and bilirubin) and thus constitute a major intracellular source of iron and carbon monoxide (CO). In recent years, endogenously produced CO has been shown to possess intriguing signaling properties affecting numerous critical cellular functions including but not limited to inflammation, cellular proliferation, and apoptotic cell death. The era of gaseous molecules in biomedical research and human diseases initiated with the discovery that the endothelial cell-derived relaxing factor was identical to the gaseous molecule nitric oxide (NO). The discovery that endogenously produced gaseous molecules such as NO and now CO can impart potent physiological and biological effector functions truly represented a paradigm shift and unraveled new avenues of intense investigations. This review covers the molecular and biochemical characterization of HOs, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress. Furthermore, the current understanding of the functional significance of HO shall be discussed from the perspective of each of the metabolic by-products, with a special emphasis on CO. Finally, this presentation aspires to lay a foundation for potential future clinical applications of these systems.

2,111 citations

Journal ArticleDOI
TL;DR: The use of pharmacological and genetic probes to manipulate HO, leading to new insights into the complex relationship of the HO system with biological and pathological phenomena under investigation, is reviewed.
Abstract: This review is intended to stimulate interest in the effect of increased expression of heme oxygenase-1 (HO-1) protein and increased levels of HO activity on normal and pathological states. The HO system includes the heme catabolic pathway, comprising HO and biliverdin reductase, and the products of heme degradation, carbon monoxide (CO), iron, and biliverdin/bilirubin. The role of the HO system in diabetes, inflammation, heart disease, hypertension, neurological disorders, transplantation, endotoxemia and other pathologies is a burgeoning area of research. This review focuses on the clinical potential of increased levels of HO-1 protein and HO activity to ameliorate tissue injury. The use of pharmacological and genetic probes to manipulate HO, leading to new insights into the complex relationship of the HO system with biological and pathological phenomena under investigation, is reviewed. This information is critical in both drug development and the implementation of clinical approaches to moderate and to alleviate the numerous chronic disorders in humans affected by perturbations in the HO system.

1,039 citations

Journal ArticleDOI
23 Dec 2010-Cell
TL;DR: It is indicated that parental diet can affect cholesterol and lipid metabolism in offspring and define a model system to study environmental reprogramming of the heritable epigenome.

1,017 citations

Journal Article
TL;DR: In this age of modern era, the use of internet must be maximized, as one of the benefits is to get the on-line analysis of human genetic linkage book, as the world window, as many people suggest.
Abstract: In this age of modern era, the use of internet must be maximized. Yeah, internet will help us very much not only for important thing but also for daily activities. Many people now, from any level can use internet. The sources of internet connection can also be enjoyed in many places. As one of the benefits is to get the on-line analysis of human genetic linkage book, as the world window, as many people suggest.

1,000 citations

Journal ArticleDOI
TL;DR: The role of heme in more active enzymatic chemical transformation began to be appreciated just after the discovery by Mason1 and Hayaishi2 that O2 O atoms can be enzymatically incorporated into organic substrates which represented the seminal discovery of oxygenases.
Abstract: Metalloporphyrins are widely used throughout the biosphere and of these heme (iron protoporphyrin IX, Fig. 1) is one of the most abundant and widely used. Heme shuttles electrons between proteins as in mitochondrial respiration or transports and stores O2 as with the globins. The role of heme in more active enzymatic chemical transformation began to be appreciated just after the discovery by Mason1 and Hayaishi2 that O2 O atoms can be enzymatically incorporated into organic substrates which represented the seminal discovery of oxygenases. While the enzymes used in these studies did not contain heme, it was not too long before heme-containing oxygenases also were discovered. In 1958 Klingenberg3 and Garfinkel4 found an unusual pigment in microsomes that when reduced in the presence of CO generated a spectrum with a peak at 450 nm instead of the expected 420 nm peak. Hence the name P450 was born. In 1964 Omura and Sato5,6 showed that this “pigment” is actually a protein and the function of this strange heme protein became clear in a seminal study by Estabrook et al.7 that demonstrated the involvement of the 450 nm pigment in steroid hydroxylation. Thus by the mid-1960s it was established that heme plays an active role in biology by somehow catalyzing the hydroxylation of organic substrates. While these discoveries certainly mark the beginning of modern approaches to studying heme enzyme oxygenases, the enzymatic role of heme dates much earlier to 1903 when horseradish peroxidase (HRP) was described.8 Indeed, owing to the ease of purification and stability of the various intermediates, HRP dominated heme enzyme studies until P450 was discovered. Figure 1 Structure of iron protoporphyrin IX. Heme enzymes can catalyze both reductive and oxidative chemistry but here we focus on those that catalyze oxidation reactions, and especially those for which crystal structures are available. There are two broad classes of heme enzyme oxidants: oxygenases that use O2 to oxidize, usually oxygenate, substrates and peroxidases that use H2O2 to oxidize, but not normally oxygenate, substrates. Of the two oxidants molecular oxygen is the most unusual because even though the oxidation of nearly all biological molecules by O2 is a thermodynamically favorable process, O2 is not a reactive molecule. The reason, of course, is that there is a large kinetic barrier to these reactions owing to O2 being a paramagnetic molecule so the reaction between a majority of biological molecules that have paired spins is a spin forbidden process. Overcoming this barrier is why Nature recruited transition metals and heme into enzyme active sites. As shown in Fig. 2, heme oxygenases bind O2 and store the O2 oxidizing equivalents in the iron, porphyrin, and/or amino acid side chains for further selective oxidation of substrates. Peroxidases use H2O2 as the oxidant and while not having the O2 spin barrier, H2O2 presents its own problems. The reaction between H2O2 and transition metals generates toxic hydroxyl radicals in the well known Fenton chemistry9 which would be highly destructive to enzyme active sites. As illustrated in Fig. 2, all heme oxidases are at some point in the catalytic cycle peroxidases. Molecular oxygen must first be reduced by two electrons to the peroxide level before the interesting chemistry starts: cleavage of the O-O bond. This bond can cleave either homolytically, which gives two hydroxyl radicals, or heterolytically to effectively give H2O and a naked O atom with only 6 valence electrons. Since the release of hydroxyl radicals in the active site must, in most cases, be avoided Nature has engineered heme enzyme active sites to ensure that the heterolytic pathway dominates. Figure 2 Oxygen and peroxide activation by heme enzymes. Oxygenases like P450 must have the iron reduced to ferrous (Fe(II) or Fe2+) before O2 can bind. The oxy complex is best described as ferric-superoxide, Fe(III)-OO−. A second electron transfer results ... The list of heme enzymes is substantial and thus it is necessary to be selective on which to discuss in detail. It may appear that a disproportionate amount of space is devoted to peroxidases and P450s. This is true and admittedly reflects the author’s own interests and area of expertise. Additionally, however, peroxidases are the most extensively studied heme enzymes and have provided fundamental insights into the chemistry and structure shared by many other enzymes. The other enzymes to be discussed were selected owing to both subtle variations on common themes and novel features that Nature selected for specific biological function.

954 citations