scispace - formally typeset
Search or ask a question
Author

David J. Civitello

Bio: David J. Civitello is an academic researcher from Emory University. The author has contributed to research in topics: Biology & Ecology. The author has an hindex of 28, co-authored 64 publications receiving 2385 citations. Previous affiliations of David J. Civitello include Colby College & Indiana University.
Topics: Biology, Ecology, Snail, Medicine, Population


Papers
More filters
Journal ArticleDOI
TL;DR: Broad evidence is provided that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species, indicating that dilution was robust across all ecological contexts examined and generally decreases parasitism and herbivory.
Abstract: Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant–herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.

491 citations

Journal ArticleDOI
01 Jun 2019
TL;DR: Understanding about the links between emerging infectious diseases and food production, finding strong associations worldwide is synthesized, to address the public health challenge posed by feeding 11 billion people.
Abstract: Infectious diseases are emerging globally at an unprecedented rate while global food demand is projected to increase sharply by 2100. Here, we synthesize the pathways by which projected agricultural expansion and intensification will influence human infectious diseases and how human infectious diseases might likewise affect food production and distribution. Feeding 11 billion people will require substantial increases in crop and animal production that will expand agricultural use of antibiotics, water, pesticides and fertilizer, and contact rates between humans and both wild and domestic animals, all with consequences for the emergence and spread of infectious agents. Indeed, our synthesis of the literature suggests that, since 1940, agricultural drivers were associated with >25% of all - and >50% of zoonotic - infectious diseases that emerged in humans, proportions that will likely increase as agriculture expands and intensifies. We identify agricultural and disease management and policy actions, and additional research, needed to address the public health challenge posed by feeding 11 billion people.

309 citations

Journal ArticleDOI
10 Jul 2014-Nature
TL;DR: It is shown that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival, and exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus.
Abstract: The fungal pathogen Batrachochytrium dendrobatidis has been implicated in the decline of a large number of amphibian species; here it is shown that frogs can learn to avoid the pathogen, acquire resistance to it and be immunized against it using dead pathogen, findings that potentially offer a way in which resistant populations could be reintroduced into areas that have seen catastrophic declines. The fungal pathogen Batrachochytrium dendrobatidis, or Bd, has been implicated in the declines of many amphibian species worldwide. There has been little evidence that amphibians can acquire resistance to this pathogen, but now Jason Rohr and colleagues present experiments on several amphibian species, including the Cuban tree frog Osteopilus septentrionalis, shown here, that demonstrate that frogs can learn to avoid the pathogen, can overcome Bd-induced immunosuppression after repeated exposure, and can be immunized against it using dead pathogen. Conservation projects have removed threatened amphibian species from Bd-positive habitats and are breeding them in captivity. Using vaccines to induce resistance in captive-bred amphibians prior to a return to the wild could make it possible in the future to repopulate areas that have seen catastrophic declines. Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group1, causing declines of many taxa, including bats, corals, bees, snakes and amphibians1,2,3,4. Currently, there is little evidence that wild animals can acquire resistance to these pathogens5. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians6. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression7,8,9 and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi5 and the fact that many animals are capable of learning to avoid natural enemies10, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.

184 citations

Journal ArticleDOI
TL;DR: This framework can predict the contribution of acclimation plasticity to the IUCN threat status of amphibians globally, suggesting that phenotypic plasticity is already buffering some species from climate change.
Abstract: Thermal acclimation capacity, the degree to which organisms can alter their optimal performance temperature and critical thermal limits with changing temperatures, reflects their ability to respond to temperature variability and thus might be important for coping with global climate change. Here, we combine simulation modelling with analysis of published data on thermal acclimation and breadth (range of temperatures over which organisms perform well) to develop a framework for predicting thermal plasticity across taxa, latitudes, body sizes, traits, habitats and methodological factors. Our synthesis includes > 2000 measures of acclimation capacities from > 500 species of ectotherms spanning fungi, invertebrates, and vertebrates from freshwater, marine and terrestrial habitats. We find that body size, latitude, and methodological factors often interact to shape acclimation responses and that acclimation rate scales negatively with body size, contributing to a general negative association between body size and thermal breadth across species. Additionally, we reveal that acclimation capacity increases with body size, increases with latitude (to mid-latitudinal zones) and seasonality for smaller but not larger organisms, decreases with thermal safety margin (upper lethal temperature minus maximum environmental temperatures), and is regularly underestimated because of experimental artefacts. We then demonstrate that our framework can predict the contribution of acclimation plasticity to the IUCN threat status of amphibians globally, suggesting that phenotypic plasticity is already buffering some species from climate change.

175 citations

Journal ArticleDOI
TL;DR: The findings indicate that microbial communities within lone star ticks are diverse, and suggest that direct probing for a wider range of prokaryotes and application of quantitative polymerase chain reaction (PCR) may provide further insights into microbial interactions within disease vectors.
Abstract: To quantify microbial composition and interactions, we identified prokaryotic communities in the lone star tick (Amblyomma americanum) based on 16S rRNA gene sequences and direct probing. The lone star tick is the vector of emerging diseases and host to additional symbionts of unknown activity, and is representative of other blood-sucking arthropods. We evaluated the potential for vertical (transovarial) transmission by molecular analysis of microbial symbionts from egg and larval clutches. Direct probing of adults (N = 8 populations from the southeastern and midwestern USA, 900 ticks total) revealed three vertically transmitted symbionts: a Coxiella symbiont occurred at 100% frequency, Rickettsia species occurred in 45-61% of all ticks in every population and an Arsenophonus symbiont occurred in 0-90% of ticks per population. Arsenophonus and Rickettsia exhibited significant heterogeneity in frequency among populations. The human pathogens Ehrlichia chafeensis and Borrelia lonestari were rare in most populations. Additional microbes were detected sporadically. Most ticks (78%) were co-infected by two or three microbes but statistical analysis indicated no significant deviation from random co-occurrence. Our findings indicate that microbial communities within lone star ticks are diverse, and suggest that direct probing for a wider range of prokaryotes and application of quantitative polymerase chain reaction (PCR) may provide further insights into microbial interactions within disease vectors. Our results also emphasize the close phylogenetic relationship between tick symbionts and human pathogens, and consistent differences in their prevalence.

169 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings Article
01 Jan 1994
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.

2,134 citations

Journal ArticleDOI
TL;DR: The current knowledge on tick-borne rickettsiae and ricksettsioses is presented using a geographic approach toward the epidemiology of these diseases.
Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These zoonoses are among the oldest known vector-borne diseases. However, in the past 25 years, the scope and importance of the recognized tick-associated rickettsial pathogens have increased dramatically, making this complex of diseases an ideal paradigm for the understanding of emerging and reemerging infections. Several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections, and novel Rickettsia species of undetermined pathogenicity continue to be detected in or isolated from ticks around the world. This remarkable expansion of information has been driven largely by the use of molecular techniques that have facilitated the identification of novel and previously recognized rickettsiae in ticks. New approaches, such as swabbing of eschars to obtain material to be tested by PCR, have emerged in recent years and have played a role in describing emerging tick-borne rickettsioses. Here, we present the current knowledge on tick-borne rickettsiae and rickettsioses using a geographic approach toward the epidemiology of these diseases.

1,016 citations

Journal ArticleDOI
TL;DR: Broad evidence is provided that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species, indicating that dilution was robust across all ecological contexts examined and generally decreases parasitism and herbivory.
Abstract: Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant–herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.

491 citations