scispace - formally typeset
Search or ask a question
Author

David J. Mann

Other affiliations: Stanford University
Bio: David J. Mann is an academic researcher from Imperial College London. The author has contributed to research in topics: Cyclin-dependent kinase & Cyclin D. The author has an hindex of 30, co-authored 58 publications receiving 5726 citations. Previous affiliations of David J. Mann include Stanford University.


Papers
More filters
Journal ArticleDOI
Eric Pop1, David J. Mann1, Qian Wang1, Kenneth E. Goodson1, Hongjie Dai1 
TL;DR: This work discusses sources of uncertainty and proposes a simple analytical model for the SWNT thermal conductivity including length and temperature dependence, which is attributed to second-order three-phonon scattering between two acoustic modes and one optical mode.
Abstract: The thermal properties of a suspended metallic single-wall carbon nanotube (SWNT) are extracted from its high-bias (I−V) electrical characteristics over the 300−800 K temperature range, achieved by Joule self-heating. The thermal conductance is approximately 2.4 nW/K, and the thermal conductivity is nearly 3500 Wm-1K-1 at room temperature for a SWNT of length 2.6 μm and diameter 1.7 nm. A subtle decrease in thermal conductivity steeper than 1/T is observed at the upper end of the temperature range, which is attributed to second-order three-phonon scattering between two acoustic modes and one optical mode. We discuss sources of uncertainty and propose a simple analytical model for the SWNT thermal conductivity including length and temperature dependence.

1,660 citations

Journal ArticleDOI
08 Jun 1995-Nature
TL;DR: It is shown that wild-type pi6 arrests normal diploid cells in late Gl, whereas a tumour-associated mutant of pi6 does not, and the ability ofpi6 to induce cell-cycle arrest is lost in cells lacking functional RB, including primary fibroblasts from Rb-/- mouse embryos.
Abstract: D-type cyclins, in association with the cyclin-dependent kinases Cdk4 or Cdk6, promote progression through the G1 phase of the cell cycle by phosphorylating the retinoblastoma protein (RB). The activities of Cdk4 and Cdk6 are constrained by inhibitors such as p16, the product of the CDKN2 gene on human chromosome 9p21 (refs 12-14). The frequent deletion or mutation of CDKN2 in tumour cells suggests that p16 acts as a tumour suppressor. We show that wild-type p16 arrests normal diploid cells in late G1, whereas a tumour-associated mutant of p16 does not. Significantly, the ability of p16 to induce cell-cycle arrest is lost in cells lacking functional RB, including primary fibroblasts from Rb-/- mouse embryos. Thus, loss of p16, overexpression of D-cyclins and loss of RB have similar effects on G1 progression, and may represent a common pathway to tumorigenesis.

929 citations

Journal ArticleDOI
TL;DR: In this article, an oxygen-assisted chemical vapor deposition method is developed to afford large-scale, highly reproducible, ultra-high-yield growth of vertical single-walled carbon nanotubes (V-SWNTs).
Abstract: An oxygen-assisted hydrocarbon chemical vapor deposition method is developed to afford large-scale, highly reproducible, ultra-high-yield growth of vertical single-walled carbon nanotubes (V-SWNTs). It is revealed that reactive hydrogen species, inevitable in hydrocarbon-based growth, are damaging to the formation of sp2-like SWNTs in a diameter-dependent manner. The addition of oxygen scavenges H species and provides a powerful control over the C/H ratio to favor SWNT growth. The revelation of the roles played by hydrogen and oxygen leads to a unified and universal optimum-growth condition for SWNTs. Further, a versatile method is developed to form V-SWNT films on any substrate, lifting a major substrate-type limitation for aligned SWNTs.

419 citations

Journal ArticleDOI
Suzanne A. Eccles1, Eric O. Aboagye2, Simak Ali2, Annie S. Anderson3, Jo Armes4, Fedor Berditchevski5, Jeremy P. Blaydes6, Keith Brennan7, Nicola J. Brown8, Helen E. Bryant8, Nigel J Bundred7, Joy Burchell4, Anna Campbell3, Jason S. Carroll9, Robert Clarke7, Charlotte E. Coles10, Gary Cook4, Angela Cox8, Nicola J. Curtin11, Lodewijk V. Dekker12, Isabel dos Santos Silva13, Stephen W. Duffy14, Douglas F. Easton9, Diana Eccles6, Dylan R. Edwards15, Joanne Edwards16, D. G. R. Evans7, Deborah Fenlon6, James M. Flanagan2, Claire Foster6, William M. Gallagher17, Montserrat Garcia-Closas1, Julia Margaret Wendy Gee18, Andy J. Gescher19, Vicky Goh4, Ashley M. Groves20, Amanda J. Harvey21, Michelle Harvie7, Bryan T. Hennessy22, Stephen Edward Hiscox18, Ingunn Holen8, Sacha J Howell7, Anthony Howell7, Gill Hubbard23, Nicholas J. Hulbert-Williams24, Myra S. Hunter4, Bharat Jasani18, Louise J. Jones14, Timothy J. Key25, Cliona C. Kirwan7, Anthony Kong25, Ian Kunkler26, Simon P. Langdon26, Martin O. Leach1, David J. Mann2, John Marshall14, Lesley Ann Martin1, Stewart G. Martin12, Jennifer E. Macdougall27, David Miles4, William R. Miller26, Joanna R. Morris5, Sue Moss14, Paul B. Mullan28, Rachel Natrajan1, James P B O'Connor7, Rosemary O'Connor29, Carlo Palmieri30, Paul D.P. Pharoah9, Emad A. Rakha12, Elizabeth Reed, Simon P. Robinson1, Erik Sahai31, John M. Saxton15, Peter Schmid32, Matthew J. Smalley18, Valerie Speirs33, Robert Stein20, John Stingl9, Charles H. Streuli, Andrew Tutt4, Galina Velikova33, Rosemary A. Walker19, Christine J. Watson9, Kaye J. Williams7, Leonie S. Young22, Alastair M. Thompson3 
TL;DR: With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.
Abstract: Introduction: Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. Methods: More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/ novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. (Continued on next page)

390 citations

Journal Article
TL;DR: It is revealed that reactive hydrogen species are damaging to the formation of sp(2)-like SWNTs in a diameter-dependent manner, and the addition of oxygen scavenges H species and provides a powerful control over the C/H ratio to favor SWNT growth.
Abstract: An oxygen-assisted hydrocarbon chemical vapor deposition method is developed to afford large-scale, highly reproducible, ultra-high-yield growth of vertical single-walled carbon nanotubes (V-SWNTs). It is revealed that reactive hydrogen species, inevitable in hydrocarbon-based growth, are damaging to the formation of sp(2)-like SWNTs in a diameter-dependent manner. The addition of oxygen scavenges H species and provides a powerful control over the C/H ratio to favor SWNT growth. The revelation of the roles played by hydrogen and oxygen leads to a unified and universal optimum-growth condition for SWNTs. Further, a versatile method is developed to form V-SWNT films on any substrate, lifting a major substrate-type limitation for aligned SWNTs.

388 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Abstract: We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range ∼(4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.

11,878 citations

Journal ArticleDOI
TL;DR: Silver staining allows a substantial shortening of sample preparation time and may, therefore, be preferable over Coomassie staining, and this work removes a major obstacle to the low-level sequence analysis of proteins separated on polyacrylamide gels.
Abstract: Proteins from silver-stained gels can be digested enzymatically and the resulting peptides analyzed and sequenced by mass spectrometry. Standard proteins yield the same peptide maps when extracted from Coomassie- and silver-stained gels, as judged by electrospray and MALDI mass spectrometry. The low nanogram range can be reached by the protocols described here, and the method is robust. A silver-stained one-dimensional gel of a fraction from yeast proteins was analyzed by nanoelectrospray tandem mass spectrometry. In the sequencing, more than 1000 amino acids were covered, resulting in no evidence of chemical modifications due to the silver staining procedure. Silver staining allows a substantial shortening of sample preparation time and may, therefore, be preferable over Coomassie staining. This work removes a major obstacle to the low-level sequence analysis of proteins separated on polyacrylamide gels.

8,437 citations

Journal ArticleDOI
TL;DR: This work challenges previous assumptions about how the G1/S transition of the mammalian cell cycle is governed, helps explain some enigmatic features of cell cycle control that also involve the functions of the retinoblastoma protein (Rb) and the INK4 proteins, and changes the thinking about how either p16 loss or overexpression of cyclin D-dependent kinases contribute to cancer.
Abstract: Mitogen-dependent progression through the first gap phase (G1) and initiation of DNA synthesis (S phase) during the mammalian cell division cycle are cooperatively regulated by several classes of cyclin-dependent kinases (CDKs) whose activities are in turn constrained by CDK inhibitors (CKIs). CKIs that govern these events have been assigned to one of two families based on their structures and CDK targets. The first class includes the INK4 proteins (inhibitors of CDK4), so named for their ability to specifically inhibit the catalytic subunits of CDK4 and CDK6. Four such proteins [p16 (Serrano et al. 1993), p15 (Hannon and Beach 1994), p18 (Guan et al. 1994; Hirai et al. 1995), and p19 (Chan et al. 1995; Hirai et al. 1995)] are composed of multiple ankyrin repeats and bind only to CDK4 and CDK6 but not to other CDKs or to D-type cyclins. The INK4 proteins can be contrasted with more broadly acting inhibitors of the Cip/Kip family whose actions affect the activities of cyclin D-, E-, and A-dependent kinases. The latter class includes p21 (Gu et al. 1993; Harper et al. 1993; El-Deiry et al. 1993; Xiong et al. 1993a; Dulic et al. 1994; Noda et al. 1994), p27 (Polyak et al. 1994a,b; Toyoshima and Hunter 1994), and p57 (Lee et al. 1995; Matsuoka et al. 1995), all of which contain characteristic motifs within their amino-terminal moieties that enable them to bind both to cyclin and CDK subunits (Chen et al. 1995, 1996; Nakanishi et al. 1995; Warbrick et al. 1995; Lin et al. 1996; Russo et al. 1996). Based largely on in vitro experiments and in vivo overexpression studies, CKIs of the Cip/Kip family were initially thought to interfere with the activities of cyclin D-, E-, and A-dependent kinases. More recent work has altered this view and revealed that although the Cip/Kip proteins are potent inhibitors of cyclin Eand A-dependent CDK2, they act as positive regulators of cyclin Ddependent kinases. This challenges previous assumptions about how the G1/S transition of the mammalian cell cycle is governed, helps explain some enigmatic features of cell cycle control that also involve the functions of the retinoblastoma protein (Rb) and the INK4 proteins, and changes our thinking about how either p16 loss or overexpression of cyclin D-dependent kinases contribute to cancer. Here we focus on the biochemical interactions that occur between CKIs and cyclin Dand E-dependent kinases in cultured mammalian cells, emphasizing the manner by which different positive and negative regulators of the cell division cycle cooperate to govern the G1-to-S transition. To gain a more comprehensive understanding of the biology of CDK inhibitors, readers are encouraged to refer to a rapidly emerging but already extensive literature (for review, see Elledge and Harper 1994; Sherr and Roberts 1995; Chellappan et al. 1998; Hengst and Reed 1998a; Kiyokawa and Koff 1998; Nakayama 1998; Ruas and Peters 1998).

6,076 citations

Journal ArticleDOI
06 Dec 1996-Science
TL;DR: Genetic alterations affecting p16INK4a and cyclin D1, proteins that govern phosphorylation of the retinoblastoma protein and control exit from the G1 phase of the cell cycle, are so frequent in human cancers that inactivation of this pathway may well be necessary for tumor development.
Abstract: Uncontrolled cell proliferation is the hallmark of cancer, and tumor cells have typically acquired damage to genes that directly regulate their cell cycles. Genetic alterations affecting p16(INK4a) and cyclin D1, proteins that govern phosphorylation of the retinoblastoma protein (RB) and control exit from the G1 phase of the cell cycle, are so frequent in human cancers that inactivation of this pathway may well be necessary for tumor development. Like the tumor suppressor protein p53, components of this "RB pathway," although not essential for the cell cycle per se, may participate in checkpoint functions that regulate homeostatic tissue renewal throughout life.

5,509 citations

Journal ArticleDOI
TL;DR: The thermal properties of carbon materials are reviewed, focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder, with special attention given to the unusual size dependence of heat conduction in two-dimensional crystals.
Abstract: Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range--of over five orders of magnitude--from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.

5,189 citations