scispace - formally typeset
Search or ask a question
Author

David J. Sanderson

Bio: David J. Sanderson is an academic researcher from National Oceanography Centre, Southampton. The author has contributed to research in topics: Fault (geology) & Strike-slip tectonics. The author has an hindex of 49, co-authored 152 publications receiving 8160 citations. Previous affiliations of David J. Sanderson include University of Southampton & Newcastle University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a small well-exposed normal fault zone at Kilve, Somerset, U.K., is described, which consists of 34 individual offset and linked fault segments, and a simple model is presented which assumes different displacement gradients inside and outside the influence of relay structures.

802 citations

Journal ArticleDOI
TL;DR: In this article, the authors use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults, which can be sub-divided in terms of fault and fracture patterns within the damage zone.

678 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine factors that control the measured displacement-fault length relationships of natural faults and suggest that there may be systematic differences between the dmax/L ratios where length is measured parallel or normal to the displacement vector, and where the growth histories of individual faults vary due to the nature and number of slip events, linkage and reactivation.

426 citations

Journal ArticleDOI
TL;DR: In this article, the geometry and evolution of exposure-scale relay ramps are described from the Somerset coast, England, and compared with larger scale ramps from elsewhere, and the relay ramps can be classified into four groups based on the degree of interaction and linkage between the overstepping segments; these groups are interpreted as being evolutionary stages.
Abstract: Relay ramps occur between normal fault segments that overstep in map view. The geometry and evolution of exposure-scale relay ramps are described from the Somerset coast, England, and are compared with larger scale ramps from elsewhere. Relay ramps can be classified into four groups based on the degree of interaction and linkage between the overstepping segments; these groups are interpreted as being evolutionary stages. In stage 1, the segments do not interact. Stage 2 involves the reorientation of bedding between two interacting faults to produce a relay ramp. In stage 3, connecting fractures start to break the relay ramp. Stage 4 is when the relay ramp is destroyed to produce a single fault that has an along-strike bend. These evolutionary stages can develop through ti e, but they can also be seen spatially. A branch line between normal faults or an along-strike bend may represent a stage 4 relay, with progressively earlier stages occurring updip or downdip. Characteristic variability in displacement-distance profiles for fault segments and linked faults accompanies the interaction and linkage processes. Displacement transfer by relay ramps is accompanied by steep displacement gradients along fault segments at oversteps. Relay ramps often contribute to a minimum in total fault displacement at a linkage point.

393 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional model was proposed to model the strain within nappes and thrust sheets, where simple boundary conditions were derived for the principal strains and solutions for principal strains were found.

265 citations


Cited by
More filters
Book
25 Jan 1991
TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Abstract: This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.

3,802 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide guidelines for the accurate and practical estimation of exponents and fractal dimensions of natural fracture systems, including length, displacement and aperture power law exponents.
Abstract: Scaling in fracture systems has become an active field of research in the last 25 years motivated by practical applications in hazardous waste disposal, hy- drocarbon reservoir management, and earthquake haz- ard assessment. Relevant publications are therefore spread widely through the literature. Although it is rec- ognized that some fracture systems are best described by scale-limited laws (lognormal, exponential), it is now recognized that power laws and fractal geometry provide widely applicable descriptive tools for fracture system characterization. A key argument for power law and fractal scaling is the absence of characteristic length scales in the fracture growth process. All power law and fractal characteristics in nature must have upper and lower bounds. This topic has been largely neglected, but recent studies emphasize the importance of layering on all scales in limiting the scaling characteristics of natural fracture systems. The determination of power law expo- nents and fractal dimensions from observations, al- though outwardly simple, is problematic, and uncritical use of analysis techniques has resulted in inaccurate and even meaningless exponents. We review these tech- niques and suggest guidelines for the accurate and ob- jective estimation of exponents and fractal dimensions. Syntheses of length, displacement, aperture power law exponents, and fractal dimensions are found, after crit- ical appraisal of published studies, to show a wide vari- ation, frequently spanning the theoretically possible range. Extrapolations from one dimension to two and from two dimensions to three are found to be nontrivial, and simple laws must be used with caution. Directions for future research include improved techniques for gathering data sets over great scale ranges and more rigorous application of existing analysis methods. More data are needed on joints and veins to illuminate the differences between different fracture modes. The phys- ical causes of power law scaling and variation in expo- nents and fractal dimensions are still poorly understood.

1,153 citations

Journal ArticleDOI
TL;DR: Fault zones and fault systems have a key role in the development of the Earth's crust and control the mechanics and fluid flow properties of the crust, and the architecture of sedimentary deposits in basins as discussed by the authors.

1,057 citations