scispace - formally typeset
Search or ask a question
Author

David J. Srolovitz

Bio: David J. Srolovitz is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Grain boundary & Dislocation. The author has an hindex of 87, co-authored 540 publications receiving 27162 citations. Previous affiliations of David J. Srolovitz include Los Alamos National Laboratory & University of Pennsylvania.


Papers
More filters
Journal ArticleDOI
13 Jan 1995-Science
TL;DR: The gas-phase reaction between MoO3-x and H2S in a reducing atmosphere at elevated temperatures (800� to 950�C) has been used to synthesize large quantities of an almost pure nested inorganic fullerene (IF) phase of MoS2, obtaining a uniform IF phase with a relatively narrow size distribution.
Abstract: The gas-phase reaction between MoO3-x and H(2)S in a reducing atmosphere at elevated temperatures (800 degrees to 950 degrees C) has been used to synthesize large quantities of an almost pure nested inorganic fullerene (IF) phase of MoS(2). A uniform IF phase with a relatively narrow size distribution was obtained. The synthesis of IFs appears to require, in addition to careful control over the growth conditions, a specific turbulent flow regime. The x-ray spectra of the different samples show that, as the average size of the IF decreases, the van der Waals gap along the c axis increases, largely because of the strain involved in folding of the lamella. Large quantities of quite uniform nanotubes were obtained under modified preparation conditions.

1,103 citations

Journal ArticleDOI
TL;DR: In this paper, two procedures were developed to fit interatomic potentials of the embedded-atom method (EAM) form and applied to determine a potential which describes crystalline and liquid iron.
Abstract: Two procedures were developed to fit interatomic potentials of the embedded-atom method (EAM) form and applied to determine a potential which describes crystalline and liquid iron. While both procedures use perfect crystal and crystal defect data, the first procedure also employs the first-principles forces in a model liquid and the second procedure uses experimental liquid structure factor data. These additional types of information were incorporated to ensure more reasonable descriptions of atomic interactions at small separations than is provided using standard approaches, such as fitting to the universal binding energy relation. The new potentials (provided herein) are, on average, in better agreement with the experimental or first-principles lattice parameter, elastic constants, point-defect energies, bcc–fcc transformation energy, liquid density, liquid structure factor, melting temperature and other properties than other existing EAM iron potentials.

1,096 citations

Journal ArticleDOI
TL;DR: In this paper, a Monte Carlo procedure is applied to the study of grain growth in two dimensions, where the initial distribution of orientations is chosen at random and the system evolves so as to reduce the number of nearest neighbor pairs of unlike crystallographic orientation.

918 citations

Journal ArticleDOI
TL;DR: In this article, a simple linear stability analysis is presented which demonstrates that the nominally flat surface of an elastically stressed body is unstable with respect to the growth of perturbations with wavelengths greater than a critical wavelength.

873 citations

Journal ArticleDOI
TL;DR: In this article, an interatomic potential for the iron-phosphorus system based on ab initio data was derived, which is intended specifically to address the problem of radiation damage and point defects in iron containing low concentrations of phosphorus atoms.
Abstract: We present the derivation of an interatomic potential for the iron–phosphorus system based primarily on ab initio data. Transferability in this system is extremely problematic, and the potential is intended specifically to address the problem of radiation damage and point defects in iron containing low concentrations of phosphorus atoms. Some preliminary molecular dynamics calculations show that P strongly affects point defect migration.

533 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations

Journal ArticleDOI
09 Mar 2001-Science
TL;DR: The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures, which could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides.
Abstract: Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.

5,677 citations

Journal ArticleDOI
TL;DR: In this article, the most characteristic properties of spin glass systems are described, and related phenomena in other glassy systems (dielectric and orientational glasses) are mentioned, and a review summarizes recent developments in the theory of spin glasses, as well as pertinent experimental data.
Abstract: This review summarizes recent developments in the theory of spin glasses, as well as pertinent experimental data. The most characteristic properties of spin glass systems are described, and related phenomena in other glassy systems (dielectric and orientational glasses) are mentioned. The Edwards-Anderson model of spin glasses and its treatment within the replica method and mean-field theory are outlined, and concepts such as "frustration," "broken replica symmetry," "broken ergodicity," etc., are discussed. The dynamic approach to describing the spin glass transition is emphasized. Monte Carlo simulations of spin glasses and the insight gained by them are described. Other topics discussed include site-disorder models, phenomenological theories for the frozen phase and its excitations, phase diagrams in which spin glass order and ferromagnetism or antiferromagnetism compete, the Ne\'el model of superparamagnetism and related approaches, and possible connections between spin glasses and other topics in the theory of disordered condensed-matter systems.

3,926 citations