scispace - formally typeset
Search or ask a question
Author

David Jennings

Other affiliations: University of Sydney, University of Oxford, University of Leeds  ...read more
Bio: David Jennings is an academic researcher from Imperial College London. The author has contributed to research in topics: Quantum & Quantum state. The author has an hindex of 26, co-authored 78 publications receiving 3352 citations. Previous affiliations of David Jennings include University of Sydney & University of Oxford.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that free energy relations cannot properly describe quantum coherence in thermodynamic processes, and it is found that coherence transformations are always irreversible.
Abstract: Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilard engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. The statistical nature of standard thermodynamics provides an incomplete picture for individual processes at the nanoscale, and new relations have been developed to extend it. Here, the authors show that by quantifying time-asymmetry it is also possible to characterize how quantum coherence is modified in such processes.

664 citations

Journal ArticleDOI
TL;DR: A quantum-mechanical generalization of majorization is used to derive a complete set of necessary and sufficient conditions for thermal transformations of quantum states, based on natural physical principles, namely, energy conservation, the existence of equilibrium states, and the requirement that quantum coherence be accounted for thermodynamics.
Abstract: What does it mean for one quantum process to be more disordered than another? Interestingly, this apparently abstract question arises naturally in a wide range of areas such as information theory, thermodynamics, quantum reference frames, and the resource theory of asymmetry. Here we use a quantum-mechanical generalization of majorization to develop a framework for answering this question, in terms of single-shot entropies, or equivalently, in terms of semi-definite programs. We also investigate some of the applications of this framework, and remarkably find that, in the context of quantum thermodynamics it provides the first complete set of necessary and sufficient conditions for arbitrary quantum state transformations under thermodynamic processes, which rigorously accounts for quantum-mechanical properties, such as coherence. Our framework of generalized thermal processes extends thermal operations, and is based on natural physical principles, namely, energy conservation, the existence of equilibrium states, and the requirement that quantum coherence be accounted for thermodynamically. Similarly to entropy, majorization allows to quantify deviation from uniformity in a wide range of fields. In this paper, the authors use its generalization to the quantum realm to derive a complete set of necessary and sufficient conditions for thermal transformations of quantum states.

432 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show how the processing of quantum coherence is constrained by the laws of thermodynamics, and how these laws can be used to constrain the quantum process.
Abstract: Quantum mechanics and thermodynamics are fundamental fields of physics. Scientists show how the processing of quantum coherence is constrained by the laws of thermodynamics.

411 citations

Journal ArticleDOI
TL;DR: It is shown that for any thermal machine with finite resources not all the coherence of a state can be extracted as work, however, even bounded thermal machines can be reused infinitely many times in the process of work extraction from coherence.
Abstract: The interplay between quantum-mechanical properties, such as coherence, and classical notions, such as energy, is a subtle topic at the forefront of quantum thermodynamics. The traditional Carnot argument limits the conversion of heat to work; here we critically assess the problem of converting coherence to work. Through a careful account of all resources involved in the thermodynamic transformations within a fully quantum-mechanical treatment, we show that there exist thermal machines extracting work from coherence arbitrarily well. Such machines only need to act on individual copies of a state and can be reused. On the other hand, we show that for any thermal machine with finite resources not all the coherence of a state can be extracted as work. However, even bounded thermal machines can be reused infinitely many times in the process of work extraction from coherence.

283 citations

Journal ArticleDOI
TL;DR: It is shown that entanglement can be analyzed in terms of three geometric features of the ellipsoid and proved that a state is separable if and only if it obeys a "nested tetrahedron" condition.
Abstract: The quantum steering ellipsoid of a two-qubit state is the set of Bloch vectors that Bob can collapse Alice's qubit to, considering all possible measurements on his qubit. We provide an elementary construction of the ellipsoid for arbitrary states, calculate its volume, and explain how this geometric representation can be made faithful. The representation provides a range of new results, and uncovers new features, such as the existence of "incomplete steering" in separable states. We show that entanglement can be analyzed in terms of three geometric features of the ellipsoid and prove that a state is separable if and only if it obeys a "nested tetrahedron" condition.

178 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Roman Orus1
TL;DR: This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject, that should be a good place for newcomers to get familiarized with some of the key ideas in the field.

1,584 citations

Journal ArticleDOI
TL;DR: Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade as mentioned in this paper and different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed.
Abstract: One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed. In the first half, the mathematical properties of the measures of quantum correlations are reviewed, related to each other, and the classical-quantum division that is common among them is discussed. In the second half, it is shown that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. It is shown that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.

1,504 citations