scispace - formally typeset
Search or ask a question
Author

David Johnston

Bio: David Johnston is an academic researcher from Massey University. The author has contributed to research in topics: Preparedness & Population. The author has an hindex of 56, co-authored 356 publications receiving 12080 citations. Previous affiliations of David Johnston include Murdoch University & Bushfire and Natural Hazards CRC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a model of resilience to hazard effects has been tested in different communities and for different hazards (toxic waste, environmental degradation and volcanic hazards) Drawing upon the health education literature, introduces a model for promoting the adoption on preparatory behaviour Discusses links between these models, and the need for their implementation within a community development framework.
Abstract: With regard to their utility in predicting the adoption of household hazard preparations, traditional approaches to public education directed at increasing awareness and/or risk perception have proven ineffective Discusses reasons why this may have occurred from public education, vulnerability analysis, and community resilience perspectives and outlines strategies for enhancing preparedness Describes a model of resilience to hazard effects that has been tested in different communities and for different hazards (toxic waste, environmental degradation and volcanic hazards) Drawing upon the health education literature, introduces a model for promoting the adoption on preparatory behaviour Discusses links between these models, and the need for their implementation within a community development framework

726 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the effects of anthropogenic noise on cetaceans has been published and their ability to document response(s), or the lack thereof, has improved.
Abstract: 1 Since the last thorough review of the effects of anthropogenic noise on cetaceans in 1995, a substantial number of research reports has been published and our ability to document response(s), or the lack thereof, has improved. While rigorous measurement of responses remains important, there is an increased need to interpret observed actions in the context of population-level consequences and acceptable exposure levels. There has been little change in the sources of noise, with the notable addition of noise from wind farms and novel acoustic deterrent and harassment devices (ADDs/AHDs). Overall, the noise sources of primary concern are ships, seismic exploration, sonars of all types and some AHDs. 2 Responses to noise fall into three main categories: behavioural, acoustic and physiological. We reviewed reports of the first two exhaustively, reviewing all peer-reviewed literature since 1995 with exceptions only for emerging subjects. Furthermore, we fully review only those studies for which received sound characteristics (amplitude and frequency) are reported, because interpreting what elicits responses or lack of responses is impossible without this exposure information. Behavioural responses include changes in surfacing, diving and heading patterns. Acoustic responses include changes in type or timing of vocalizations relative to the noise source. For physiological responses we address the issues of auditory threshold shifts and ‘stress’, albeit in a more limited capacity; a thorough review of physiological consequences is beyond the scope of this paper. 3 Overall, we found significant progress in the documentation of responses of cetaceans to various noise sources. However, we are concerned about the lack of investigation into the potential effects of prevalent noise sources such as commercial sonars, depth finders and fisheries acoustics gear. Furthermore, we were surprised at the number of experiments that failed to report any information about the sound exposure experienced by their experimental subjects. Conducting experiments with cetaceans is challenging and opportunities are limited, so use of the latter should be maximized and include rigorous measurements and or modelling of exposure.

565 citations

Journal ArticleDOI
TL;DR: In this article, the authors stress that risks in the context of natural hazards always involve interactions between natural (physical) and human (behavioural) factors, and that access to information and capacity for self-protection are typically distributed unevenly within populations.
Abstract: Understanding how people interpret risks and choose actions based on their interpretations is vital to any strategy for disaster reduction. We review relevant literature with the aim of developing a conceptual framework to guide future research in this area. We stress that risks in the context of natural hazards always involve interactions between natural (physical) and human (behavioural) factors. Decision-making under conditions of uncertainty is inadequately described by traditional models of 'rational choice'. Instead, attention needs to be paid to how people's interpretations of risks are shaped by their own experience, personal feelings and values, cultural beliefs and interpersonal and societal dynamics. Furthermore, access to information and capacity for self-protection are typically distributed unevenly within populations. Hence trust is a critical moderator of the effectiveness of any policy for risk communication and public engagement.

455 citations

Journal ArticleDOI
TL;DR: An overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators.
Abstract: Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating.

268 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Book ChapterDOI
01 Sep 1989
TL;DR: We may not be able to make you love reading, but archaeology of knowledge will lead you to love reading starting from now as mentioned in this paper, and book is the window to open the new world.
Abstract: We may not be able to make you love reading, but archaeology of knowledge will lead you to love reading starting from now. Book is the window to open the new world. The world that you want is in the better stage and level. World will always guide you to even the prestige stage of the life. You know, this is some of how reading will give you the kindness. In this case, more books you read more knowledge you know, but it can mean also the bore is full.

5,075 citations

Journal ArticleDOI
TL;DR: To build collective resilience, communities must reduce risk and resource inequities, engage local people in mitigation, create organizational linkages, boost and protect social supports, and plan for not having a plan, which requires flexibility, decision-making skills, and trusted sources of information that function in the face of unknowns.
Abstract: Communities have the potential to function effectively and adapt successfully in the aftermath of disasters. Drawing upon literatures in several disciplines, we present a theory of resilience that encompasses contemporary understandings of stress, adaptation, wellness, and resource dynamics. Community resilience is a process linking a network of adaptive capacities (resources with dynamic attributes) to adaptation after a disturbance or adversity. Community adaptation is manifest in population wellness, defined as high and non-disparate levels of mental and behavioral health, functioning, and quality of life. Community resilience emerges from four primary sets of adaptive capacities—Economic Development, Social Capital, Information and Communication, and Community Competence—that together provide a strategy for disaster readiness. To build collective resilience, communities must reduce risk and resource inequities, engage local people in mitigation, create organizational linkages, boost and protect social supports, and plan for not having a plan, which requires flexibility, decision-making skills, and trusted sources of information that function in the face of unknowns.

3,592 citations

01 Jan 2009

3,235 citations