scispace - formally typeset
Search or ask a question
Author

David Kinderlehrer

Bio: David Kinderlehrer is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Grain boundary & Misorientation. The author has an hindex of 36, co-authored 116 publications receiving 8766 citations. Previous affiliations of David Kinderlehrer include University of Minnesota & University of Pisa.


Papers
More filters
Book
01 Jan 1980
TL;DR: In this paper, the SIAM edition Preface Glossary of notations Introduction Part I. Variational Inequalities in Rn Part II. Free Boundary Problems Governed by Elliptic Equations and Systems Part VII. A One Phase Stefan Problem Bibliography Index.
Abstract: Preface to the SIAM edition Preface Glossary of notations Introduction Part I. Variational Inequalities in Rn Part II. Variational Inequalities in Hilbert Space Part III. Variational Inequalities for Monotone Operators Part IV. Problems of Regularity Part V. Free Boundary Problems and the Coincidence Set of the Solution Part VI. Free Boundary Problems Governed by Elliptic Equations and Systems Part VII. Applications of Variational Inequalities Part VIII. A One Phase Stefan Problem Bibliography Index.

4,107 citations

Journal ArticleDOI
TL;DR: The Fokker-Planck equation as mentioned in this paper describes the evolution of the probability density for a stochastic process associated with an Ito Stochastic Differential Equation.
Abstract: The Fokker--Planck equation, or forward Kolmogorov equation, describes the evolution of the probability density for a stochastic process associated with an Ito stochastic differential equation. It ...

1,552 citations

Journal ArticleDOI
TL;DR: In this paper, the existence and partial regularity of boundary-value problems for the static theory of liquid crystals is established and some related problems involving magnetic or electric fields are also discussed.
Abstract: We establish the existence and partial regularity for solutions of some boundary-value problems for the static theory of liquid crystals. Some related problems involving magnetic or electric fields are also discussed.

349 citations

Journal Article
TL;DR: In this paper, the authors implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php).
Abstract: L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

276 citations

BookDOI
01 Jan 1986
TL;DR: In this paper, the effective dielectric coefficient of a composite medium is derived from the Darcy's constant, and the effect of the number of dielectrics on the overall response of an Inhomogeneous Nonlinear Dielectric.
Abstract: Generalized Plate Models and Optimal Design.- The Effective Dielectric Coefficient of a Composite Medium: Rigorous Bounds From Analytic Properties.- Variational Bounds on Darcy's Constant.- Micromodeling of Void Growth and Collapse.- On Bounding the Effective Conductivity of Anisotropic Composites.- Thin Plates with Rapidly Varying Thickness, and Their Relation to Structural Optimization.- Modelling the Properties of Composites by Laminates.- Waves in Bubbly Liquids.- Some Examples of Crinkles.- Microstructures and Physical Properties of Composites.- Remarks on Homogenization.- Variational Estimates for the Overall Response of an Inhomogeneous Nonlinear Dielectric.- Information About Other Volumes in this Program.

176 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: In this paper, a class of partial differential equations that generalize and are represented by Laplace's equation was studied. And the authors used the notation D i u, D ij u for partial derivatives with respect to x i and x i, x j and the summation convention on repeated indices.
Abstract: We study in this chapter a class of partial differential equations that generalize and are to a large extent represented by Laplace’s equation. These are the elliptic partial differential equations of second order. A linear partial differential operator L defined by $$ Lu{\text{: = }}{a_{ij}}\left( x \right){D_{ij}}u + {b_i}\left( x \right){D_i}u + c\left( x \right)u $$ is elliptic on Ω ⊂ ℝ n if the symmetric matrix [a ij ] is positive definite for each x ∈ Ω. We have used the notation D i u, D ij u for partial derivatives with respect to x i and x i , x j and the summation convention on repeated indices is used. A nonlinear operator Q, $$ Q\left( u \right): = {a_{ij}}\left( {x,u,Du} \right){D_{ij}}u + b\left( {x,u,Du} \right) $$ [D u = (D 1 u, ..., D n u)], is elliptic on a subset of ℝ n × ℝ × ℝ n ] if [a ij (x, u, p)] is positive definite for all (x, u, p) in this set. Operators of this form are called quasilinear. In all of our examples the domain of the coefficients of the operator Q will be Ω × ℝ × ℝ n for Ω a domain in ℝ n . The function u will be in C 2(Ω) unless explicitly stated otherwise.

8,299 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a methodology for optimal shape design based on homogenization, which is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i.i.
Abstract: Optimal shape design of structural elements based on boundary variations results in final designs that are topologically equivalent to the initial choice of design, and general, stable computational schemes for this approach often require some kind of remeshing of the finite element approximation of the analysis problem. This paper presents a methodology for optimal shape design where both these drawbacks can be avoided. The method is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i~otropic material, with the requirement that the resulting structure can carry the given loads as well as satisfy other design requirements. The computation of effective material properties for the anisotropic material is carried out using the method of homogenization. Computational results are presented and compared with results obtained by boundary variations.

5,858 citations

Book
02 Jan 2013
TL;DR: In this paper, the authors provide a detailed description of the basic properties of optimal transport, including cyclical monotonicity and Kantorovich duality, and three examples of coupling techniques.
Abstract: Couplings and changes of variables.- Three examples of coupling techniques.- The founding fathers of optimal transport.- Qualitative description of optimal transport.- Basic properties.- Cyclical monotonicity and Kantorovich duality.- The Wasserstein distances.- Displacement interpolation.- The Monge-Mather shortening principle.- Solution of the Monge problem I: global approach.- Solution of the Monge problem II: Local approach.- The Jacobian equation.- Smoothness.- Qualitative picture.- Optimal transport and Riemannian geometry.- Ricci curvature.- Otto calculus.- Displacement convexity I.- Displacement convexity II.- Volume control.- Density control and local regularity.- Infinitesimal displacement convexity.- Isoperimetric-type inequalities.- Concentration inequalities.- Gradient flows I.- Gradient flows II: Qualitative properties.- Gradient flows III: Functional inequalities.- Synthetic treatment of Ricci curvature.- Analytic and synthetic points of view.- Convergence of metric-measure spaces.- Stability of optimal transport.- Weak Ricci curvature bounds I: Definition and Stability.- Weak Ricci curvature bounds II: Geometric and analytic properties.

5,524 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Book
01 Jan 2005
TL;DR: In this article, Gradient flows and curves of Maximal slopes of the Wasserstein distance along geodesics are used to measure the optimal transportation problem in the space of probability measures.
Abstract: Notation.- Notation.- Gradient Flow in Metric Spaces.- Curves and Gradients in Metric Spaces.- Existence of Curves of Maximal Slope and their Variational Approximation.- Proofs of the Convergence Theorems.- Uniqueness, Generation of Contraction Semigroups, Error Estimates.- Gradient Flow in the Space of Probability Measures.- Preliminary Results on Measure Theory.- The Optimal Transportation Problem.- The Wasserstein Distance and its Behaviour along Geodesics.- Absolutely Continuous Curves in p(X) and the Continuity Equation.- Convex Functionals in p(X).- Metric Slope and Subdifferential Calculus in (X).- Gradient Flows and Curves of Maximal Slope in p(X).

3,401 citations