scispace - formally typeset
Search or ask a question
Author

David L. Ozsvath

Bio: David L. Ozsvath is an academic researcher from University of Wisconsin–Stevens Point. The author has contributed to research in topics: Fluoride & Carbonate rock. The author has an hindex of 4, co-authored 4 publications receiving 561 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Although much is known about the occurrence and health effects of fluoride, problems persist in Third World countries, where populations have little choice in the source of their drinking water and food, even in developed nations, fluoride ingestion can exceed the recommended dose when sources other than drinking water are ignored.
Abstract: The relationship between environmental fluoride and human health has been studied for over 100 years by researchers from a wide variety of disciplines. Most scientists believe that small amounts of fluoride in the diet can help prevent dental caries and strengthen bones, but there are a number of adverse affects that chronic ingestion at high doses can have on human health, including dental fluorosis, skeletal fluorosis, increased rates of bone fractures, decreased birth rates, increased rates of urolithiasis (kidney stones), impaired thyroid function, and lower intelligence in children. Chronic occupational exposure to fluoride dust and gas is associated with higher rates of bladder cancer and variety of respiratory ailments. Acute fluoride toxicity and even death from the ingestion of sodium fluoride pesticides and dental products have also been reported. The distribution of fluoride in the natural environment is very uneven, largely a result of the geochemical behavior of this element. Fluorine is preferentially enriched in highly evolved magmas and hydrothermal solutions, which explains why high concentrations are often found in syenites, granitoid plutonic rocks, alkaline volcanic, and hydrothermal deposits. Fluoride can also occur in sedimentary formations that contain fluoride-bearing minerals derived from the parent rock, fluoride-rich clays, or fluorapatite. Dissolved fluoride levels are usually controlled by the solubility of fluorite (CaF2); thus, high concentrations are often associated with soft, alkaline, and calcium-deficient waters. Although much is known about the occurrence and health effects of fluoride, problems persist in Third World countries, where populations have little choice in the source of their drinking water and food. However, even in developed nations, fluoride ingestion can exceed the recommended dose when sources other than drinking water are ignored.

493 citations

Journal ArticleDOI
TL;DR: Groundwater samples were collected in the Thar Desert of the Umarkot Sub-District, Pakistan to evaluate the geochemical controls on the occurrence of high fluoride (F(-)) levels within the study area to assess the influences of silicate mineral weathering and evaporation.

96 citations

Journal ArticleDOI
TL;DR: Water samples from 2,789 private water-supply wells in Marathon County, Wisconsin reveal that fluoride concentrations in the crystalline bedrock range from <0.01 to 7.60 mg/L, with 0.6% of the values exceeding the Environmental Protection Agency's (EPA's) maximum contaminant level of 4.5 mg/l, and 8.6 percent exceeding the EPA's secondary maximum contaminants level of 2.0 mg/ l.
Abstract: Water samples from 2,789 private water-supply wells in Marathon County, Wisconsin reveal that fluoride concentrations in the crystalline bedrock range from <0.01 to 7.60 mg/L, with 0.6% of the values exceeding the Environmental Protection Agency’s (EPA’s) maximum contaminant level of 4 mg/L, and 8.6% exceeding the EPA’s secondary maximum contaminant level of 2.0 mg/L. Roughly a quarter of the wells contain dissolve fluoride within the range considered optimal for human health (between 0.5 and 1.5 mg/L), whereas 63.3% fall below 0.5 mg/L. Consistent with studies conducted in other regions, felsic rocks have significantly higher fluoride concentrations than mafic and metasedimentary rocks. Syenites yield the most fluoriferous groundwaters, but the highest median concentration occurs in a sodium-plagioclase granite. A relationship between plagioclase composition and fluoride concentrations suggests that dissolved fluoride levels are controlled by fluorite solubility and that higher fluoride concentrations are found in soft, sodium-rich groundwater.

78 citations

Journal ArticleDOI
TL;DR: In this article, the authors carried out hydrogeochemical investigations in Dashtestan, the eastern part of Borazjan, with a focus on fluoride content, and found that marl is a likely source of fluoride.
Abstract: Hydrogeochemical investigations were carried out in the Dashtestan, the eastern part of Borazjan, with a focus on fluoride content. The study area is underlain by a complex geology that is dominated by three lithological units, namely marl, alluvial sediments, and carbonate rocks. To assess the major geochemical factors controlling the fluoride enrichment in water, 37 groundwater and 12 surface water samples were collected from the three lithological units. Fluoride concentrations ranged up to 3 mg/L, and average concentrations varied from 1.12 (in carbonate aquifers) to 1.73 (in alluvial aquifers) to 1.82 mg/L (in marl aquifers). To study the influence of rocks and soils on groundwater quality, an additional 41 soil and rock samples were also taken and analyzed for fluoride. The order of average fluoride content in both rocks and soils is: marl > alluvial sediments > limestone, which confirms that marl is a likely source of fluoride.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Although much is known about the occurrence and health effects of fluoride, problems persist in Third World countries, where populations have little choice in the source of their drinking water and food, even in developed nations, fluoride ingestion can exceed the recommended dose when sources other than drinking water are ignored.
Abstract: The relationship between environmental fluoride and human health has been studied for over 100 years by researchers from a wide variety of disciplines. Most scientists believe that small amounts of fluoride in the diet can help prevent dental caries and strengthen bones, but there are a number of adverse affects that chronic ingestion at high doses can have on human health, including dental fluorosis, skeletal fluorosis, increased rates of bone fractures, decreased birth rates, increased rates of urolithiasis (kidney stones), impaired thyroid function, and lower intelligence in children. Chronic occupational exposure to fluoride dust and gas is associated with higher rates of bladder cancer and variety of respiratory ailments. Acute fluoride toxicity and even death from the ingestion of sodium fluoride pesticides and dental products have also been reported. The distribution of fluoride in the natural environment is very uneven, largely a result of the geochemical behavior of this element. Fluorine is preferentially enriched in highly evolved magmas and hydrothermal solutions, which explains why high concentrations are often found in syenites, granitoid plutonic rocks, alkaline volcanic, and hydrothermal deposits. Fluoride can also occur in sedimentary formations that contain fluoride-bearing minerals derived from the parent rock, fluoride-rich clays, or fluorapatite. Dissolved fluoride levels are usually controlled by the solubility of fluorite (CaF2); thus, high concentrations are often associated with soft, alkaline, and calcium-deficient waters. Although much is known about the occurrence and health effects of fluoride, problems persist in Third World countries, where populations have little choice in the source of their drinking water and food. However, even in developed nations, fluoride ingestion can exceed the recommended dose when sources other than drinking water are ignored.

493 citations

Journal ArticleDOI
TL;DR: In this paper, the distribution of fluoride contamination in water, its sources, mobilization and association, and the major findings are: (1) Anomalous fluoride concentration in groundwater is mainly confined to arid and semi-arid regions of Asia and North Africa.
Abstract: Fluoride contamination in water is a major problem across the globe, with health hazards such as dental and skeletal fluorosis. Most earlier studies are confined to local or regional scales. As the problem has serious socioeconomic implications, there is a need for a global perspective. Thus, here we review worldwide research for nearly a century on fluoride contamination in water. We investigated the distribution of fluoride contamination in water, its sources, mobilization and association. The major findings are: (1) Anomalous fluoride concentration in groundwater is mainly confined to arid and semiarid regions of Asia and North Africa. (2) The geogenic sources of fluoride in water are mainly fluorine-bearing minerals in rocks and sediments, whereas anthropogenic sources of fluoride in water are mainly pesticides and industrial waste. (3) Fluoride mobilization from geogenic sources is mainly controlled by alkalinity and temperature. (4) Fluoride occurrence in water is associated with ions such as sodium, arsenic chloride and bicarbonate. There are few associations of fluoride in water with calcium and magnesium.

257 citations

Journal ArticleDOI
TL;DR: A comprehensive summary and critical analysis of previous NF and RO applications on fluoride and uranium removal is presented and the influence of operating conditions, water quality, solute–solute interactions, membrane characteristics and membrane fouling on Fluoride and uranium retention is critically reviewed.

232 citations

Journal ArticleDOI
07 Mar 2016-Analyst
TL;DR: This review highlights recent applications of μPADs for environmental analysis along with technical advances that may enable μPads to be more widely implemented in field testing.
Abstract: The field of paper-based microfluidics has experienced rapid growth over the past decade. Microfluidic paper-based analytical devices (μPADs), originally developed for point-of-care medical diagnostics in resource-limited settings, are now being applied in new areas, such as environmental analyses. Low-cost paper sensors show great promise for on-site environmental analysis; the theme of ongoing research complements existing instrumental techniques by providing high spatial and temporal resolution for environmental monitoring. This review highlights recent applications of μPADs for environmental analysis along with technical advances that may enable μPADs to be more widely implemented in field testing.

232 citations