scispace - formally typeset
Search or ask a question
Author

David L. Smith

Bio: David L. Smith is an academic researcher from University of Nebraska–Lincoln. The author has contributed to research in topics: Mass spectrometry & Fast atom bombardment. The author has an hindex of 49, co-authored 155 publications receiving 8289 citations. Previous affiliations of David L. Smith include Purdue University & Eppley Institute for Research in Cancer and Allied Diseases.


Papers
More filters
Journal ArticleDOI
TL;DR: Results of this investigation indicate that the combination of protein fragmentation and HPLC‐FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.
Abstract: A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.

995 citations

Journal ArticleDOI
TL;DR: A new method that uses acid proteases and mass spectrometry to determine amide hydrogen exchange rates in proteins makes this approach particularly attractive for a wide range of studies, particularly in the areas of sensitivity, protein solubility, detection of correlated exchange and high molecular mass proteins.
Abstract: The rates at which hydrogens located at peptide amide linkages in proteins undergo isotopic exchange when a protein is exposed to D2O depend on whether these amide hydrogens are hydrogen bonded and whether they are accessible to the aqueous solvent. Hence, amide hydrogen exchange rates are a sensitive probe for detecting changes in protein conformation and dynamics. Hydrogen exchange rates in proteins are most often measured by NMR or Fourier transform IR spectroscopy. After a brief introduction to model kinetics used to relate amide hydrogen exchange rates to protein structure and dynamics, information required to understand and implement a new method that uses acid proteases and mass spectrometry to determine amide hydrogen exchange rates in proteins is presented. Structural and dynamic features affecting isotopic exchange rates can be detected and localized from the deuterium levels detected by mass spectrometry in proteolytic fragments of the protein. Procedures used to adjust for isotopic exchange occurring during the analysis, to extract isotope exchange rate constants from mass spectra and to link bimodal isotope patterns to protein unfolding and structural heterogeneity are also discussed. In addition, the relative merits of using mass spectrometry or NMR combined with amide hydrogen exchange to study protein structure and dynamics are discussed. The spatial resolution of hydrogen exchange results obtained by this method is typically in the range of 1-10 residues, which is substantially less than that obtained by high-resolution NMR, but sufficient to detect many functionally significant structural changes. Advantages in the areas of sensitivity, protein solubility, detection of correlated exchange and high molecular mass proteins make this approach particularly attractive for a wide range of studies.

410 citations

Journal ArticleDOI
TL;DR: The results provided the most detailed map to date of the identities of protein species on two-dimensional electrophoresis gels of adult human lenses, indicating that a major fraction of the water-soluble protein of the adult human lens is composed of truncated beta B1 and beta A3/A1 crystallins, and that nearly all human crystallins are susceptible to deamidation.

270 citations

Journal ArticleDOI
TL;DR: Of the many reactions hypothesized to lead to crystallin insolubility and cataract, these results most strongly support metal-catalysed oxidation, deamidation and truncation as initiators of conformational changes that favor aggregation.

263 citations


Cited by
More filters
Journal ArticleDOI
08 Mar 2002-Science
TL;DR: Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.
Abstract: Efficient folding of many newly synthesized proteins depends on assistance from molecular chaperones, which serve to prevent protein misfolding and aggregation in the crowded environment of the cell. Nascent chain–binding chaperones, including trigger factor, Hsp70, and prefoldin, stabilize elongating chains on ribosomes in a nonaggregated state. Folding in the cytosol is achieved either on controlled chain release from these factors or after transfer of newly synthesized proteins to downstream chaperones, such as the chaperonins. These are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. Understanding how the thousands of different proteins synthesized in a cell use this chaperone machinery has profound implications for biotechnology and medicine.

3,288 citations

Journal ArticleDOI
10 Feb 2006-Science
TL;DR: H4-K16Ac inhibits the ability of the adenosine triphosphate–utilizing chromatin assembly and remodeling enzyme ACF to mobilize a mononucleosome, indicating that this single histone modification modulates both higher order chromatin structure and functional interactions between a nonhistone protein and the chromatin fiber.
Abstract: Acetylation of histone H4 on lysine 16 (H4-K16Ac) is a prevalent and reversible posttranslational chromatin modification in eukaryotes. To characterize the structural and functional role of this mark, we used a native chemical ligation strategy to generate histone H4 that was homogeneously acetylated at K16. The incorporation of this modified histone into nucleosomal arrays inhibits the formation of compact 30-nanometer-like fibers and impedes the ability of chromatin to form cross-fiber interactions. H4-K16Ac also inhibits the ability of the adenosine triphosphate-utilizing chromatin assembly and remodeling enzyme ACF to mobilize a mononucleosome, indicating that this single histone modification modulates both higher order chromatin structure and functional interactions between a nonhistone protein and the chromatin fiber.

1,841 citations

Journal ArticleDOI
Joseph A. Loo1
TL;DR: Several applications of ESI-MS are discussed, including protein interactions with metal ions and nucleic acids and subunit protein structures (quaternary structure) and mass spectrometry offers advantages in speed and sensitivity.
Abstract: Electrospray ionization mass spectrometry has been used to study protein interactions driven by noncovalent forces The gentleness of the electrospray ionization process allows intact protein complexes to be directly detected by mass spectrometry Evidence from the growing body of literature suggests that the ESI-MS observations for these weakly bound systems reflect, to some extent, the nature of the interaction found in the condensed phase Stoichiometry of the complex can be easily obtained from the resulting mass spectrum because the molecular weight of the complex is directly measured For the study of protein interactions, ESI-MS is complementary to other biophysical methods, such as NMR and analytical ultracentrifugation However, mass spectrometry offers advantages in speed and sensitivity The experimental variables that play a role in the outcome of ESI-MS studies of noncovalently bound complexes are reviewed Several applications of ESI-MS are discussed, including protein interactions with metal ions and nucleic acids and subunit protein structures (quaternary structure)

1,137 citations