scispace - formally typeset
Search or ask a question
Author

David Lane

Bio: David Lane is an academic researcher. The author has contributed to research in topics: Internal transcribed spacer & Phylogenetic tree. The author has an hindex of 1, co-authored 1 publications receiving 73 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A phylogenetic tree reflecting the relationships among proteobacteria was reconstructed based on 23S rRNA sequence comparison, similar to that of a tree based on an equivalent 16S r RNA sequence data set.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that only careful data analysis starting with a proper alignment, followed by the analysis of positional variability, rates and character of change, testing various data selections, applying alternative treeing methods and, finally, performing confidence tests, allows reasonable utilization of the limited phylogenetic information.
Abstract: Comparative sequence analysis of small subunit rRNA is currently one of the most important methods for the elucidation of bacterial phylogeny as well as bacterial identification. Phylogenetic investigations targeting alternative phylogenetic markers such as large subunit rRNA, elongation factors, and ATPases have shown that 16S rRNA-based trees reflect the history of the corresponding organisms globally. However, in comparison with three to four billion years of evolution the phylogenetic information content of these markers is limited. Consequently, the limited resolution power of the marker molecules allows only a spot check of the evolutionary history of microorganisms. This is often indicated by locally different topologies of trees based on different markers, data sets or the application of different treeing approaches. Sequence peculiarities as well as methods and parameters for data analysis were studied with respect to their effects on the results of phylogenetic investigations. It is shown that only careful data analysis starting with a proper alignment, followed by the analysis of positional variability, rates and character of change, testing various data selections, applying alternative treeing methods and, finally, performing confidence tests, allows reasonable utilization of the limited phylogenetic information.

766 citations

Journal ArticleDOI
TL;DR: It is concluded that the continued inclusion of Epsilonproteob bacteria within the Proteobacteria is not warranted, and this group should be reassigned to a novel phylum for which the name Epsilonbacteraeota is proposed, and a number of subordinate changes are recommended to ensure consistency with the genome-based phylogeny.
Abstract: The Epsilonproteobacteria is the fifth validly described class of the phylum Proteobacteria, known primarily for clinical relevance and for chemolithotrophy in various terrestrial and marine environments, including deep-sea hydrothermal vents. As 16S rRNA gene repositories have expanded and protein marker analysis become more common, the phylogenetic placement of this class has become less certain. A number of recent analyses of the bacterial tree of life using both 16S rRNA and concatenated marker gene analyses have failed to recover the Epsilonproteobacteria as monophyletic with all other classes of Proteobacteria. In order to address this issue, we investigated the phylogenetic placement of this class in the bacterial domain using 16S and 23S rRNA genes, as well as 120 single-copy marker proteins. Single- and concatenated-marker trees were created using a data set of 4,170 bacterial representatives, including 98 Epsilonproteobacteria. Phylogenies were inferred under a variety of tree building methods, with sequential jackknifing of outgroup phyla to ensure robustness of phylogenetic affiliations under differing combinations of bacterial genomes. Based on the assessment of nearly 300 phylogenetic tree topologies, we conclude that the continued inclusion of Epsilonproteobacteria within the Proteobacteria is not warranted, and that this group should be reassigned to a novel phylum for which we propose the name Epsilonbacteraeota (phyl. nov.). We further recommend the reclassification of the order Desulfurellales (Deltaproteobacteria) to a novel class within this phylum and a number of subordinate changes to ensure consistency with the genome-based phylogeny. Phylogenomic analysis of 658 genomes belonging to the newly proposed Epsilonbacteraeota suggests that the ancestor of this phylum was an autotrophic, motile, thermophilic chemolithotroph that likely assimilated nitrogen from ammonium taken up from the environment or generated from environmental nitrate and nitrite by employing a variety of functional redox modules. The emergence of chemoorganoheterotrophic lifestyles in several Epsilonbacteraeota families is the result of multiple independent losses of various ancestral chemolithoautotrophic pathways. Our proposed reclassification of this group resolves an important anomaly in bacterial systematics and ensures that the taxonomy of Proteobacteria remains robust, specifically as genome-based taxonomies become more common.

287 citations

Journal ArticleDOI
TL;DR: A rapid (<4 h) detection and identification system that uses universal PCR primers to amplify a variable region of bacterial 23S ribosomal DNA, followed by reverse hybridization of the products to a panel of oligonucleotides was successful in discriminating a range of bacteria in pure cultures.
Abstract: The rapid identification of bacteria in blood cultures and other clinical specimens is important for patient management and antimicrobial therapy. We describe a rapid (<4 h) detection and identification system that uses universal PCR primers to amplify a variable region of bacterial 23S ribosomal DNA, followed by reverse hybridization of the products to a panel of oligonucleotides. This procedure was successful in discriminating a range of bacteria in pure cultures. When this procedure was applied directly to 158 unselected positive blood culture broths on the day when growth was detected, 125 (79.7%) were correctly identified, including 4 with mixed cultures. Nine (7.2%) yielded bacteria for which no oligonucleotide targets were present in the oligonucleotide panel, and 16 culture-positive broths (10.3%) produced no PCR product. In seven of the remaining eight broths, streptococci were identified but not subsequently grown, and one isolate of Staphylococcus aureus was misidentified as a coagulase-negative staphylococcus. The accuracy, range, and discriminatory power of the assay can be continually extended by adding further oligonucleotides to the panel without significantly increasing complexity or cost.

241 citations

Journal ArticleDOI
TL;DR: A polyphasic study including phenotypic, chemotaxonomic, and molecular features of the strains isolated in this study showed that they belong to a new species of the genus Ochrobactrum, for which the name OchRobactrum lupini sp.
Abstract: The nodulation of legumes has for more than a century been considered an exclusive capacity of a group of microorganisms commonly known as rhizobia and belonging to the α-Proteobacteria. However, in the last 3 years four nonrhizobial species, belonging to α and β subclasses of the Proteobacteria, have been described as legume-nodulating bacteria. In the present study, two fast-growing strains, LUP21 and LUP23, were isolated from nodules of Lupinus honoratus. The phylogenetic analysis based on the 16S and 23S rRNA gene sequences showed that the isolates belong to the genus Ochrobactrum. The strains were able to reinfect Lupinus plants. A plasmid profile analysis showed the presence of three plasmids. The nodD and nifH genes were located on these plasmids, and their sequences were obtained. These sequences showed a close resemblance to the nodD and nifH genes of rhizobial species, suggesting that the nodD and nifH genes carried by strain LUP21T were acquired by horizontal gene transfer. A polyphasic study including phenotypic, chemotaxonomic, and molecular features of the strains isolated in this study showed that they belong to a new species of the genus Ochrobactrum for which we propose the name Ochrobactrum lupini sp. nov. Strain LUP21T (LMG 20667T) is the type strain.

241 citations