scispace - formally typeset
Search or ask a question
Author

David Lowe

Bio: David Lowe is an academic researcher. The author has contributed to research in topics: Radial basis function network & Linear interpolation. The author has an hindex of 1, co-authored 1 publications receiving 3464 citations.

Papers
More filters
Journal Article•
TL;DR: The relationship between 'learning' in adaptive layered networks and the fitting of data with high dimensional surfaces is discussed, leading naturally to a picture of 'generalization in terms of interpolation between known data points and suggests a rational approach to the theory of such networks.
Abstract: : The relationship between 'learning' in adaptive layered networks and the fitting of data with high dimensional surfaces is discussed. This leads naturally to a picture of 'generalization in terms of interpolation between known data points and suggests a rational approach to the theory of such networks. A class of adaptive networks is identified which makes the interpolation scheme explicit. This class has the property that learning is equivalent to the solution of a set of linear equations. These networks thus represent nonlinear relationships while having a guaranteed learning rule. Great Britain.

3,538 citations


Cited by
More filters
Book•
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Book•
Christopher M. Bishop1•
01 Jan 1995
TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Abstract: From the Publisher: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

19,056 citations

Journal Article•DOI•
TL;DR: The general regression neural network (GRNN) is a one-pass learning algorithm with a highly parallel structure that provides smooth transitions from one observed value to another.
Abstract: A memory-based network that provides estimates of continuous variables and converges to the underlying (linear or nonlinear) regression surface is described. The general regression neural network (GRNN) is a one-pass learning algorithm with a highly parallel structure. It is shown that, even with sparse data in a multidimensional measurement space, the algorithm provides smooth transitions from one observed value to another. The algorithmic form can be used for any regression problem in which an assumption of linearity is not justified. >

4,091 citations

Journal Article•DOI•
TL;DR: It is proved thatRBF networks having one hidden layer are capable of universal approximation, and a certain class of RBF networks with the same smoothing factor in each kernel node is broad enough for universal approximation.
Abstract: There have been several recent studies concerning feedforward networks and the problem of approximating arbitrary functionals of a finite number of real variables. Some of these studies deal with cases in which the hidden-layer nonlinearity is not a sigmoid. This was motivated by successful applications of feedforward networks with nonsigmoidal hidden-layer units. This paper reports on a related study of radial-basis-function (RBF) networks, and it is proved that RBF networks having one hidden layer are capable of universal approximation. Here the emphasis is on the case of typical RBF networks, and the results show that a certain class of RBF networks with the same smoothing factor in each kernel node is broad enough for universal approximation.

3,755 citations

Journal Article•DOI•
01 Sep 1990
TL;DR: Regularization networks are mathematically related to the radial basis functions, mainly used for strict interpolation tasks as mentioned in this paper, and two extensions of the regularization approach are presented, along with the approach's corrections to splines, regularization, Bayes formulation, and clustering.
Abstract: The problem of the approximation of nonlinear mapping, (especially continuous mappings) is considered. Regularization theory and a theoretical framework for approximation (based on regularization techniques) that leads to a class of three-layer networks called regularization networks are discussed. Regularization networks are mathematically related to the radial basis functions, mainly used for strict interpolation tasks. Learning as approximation and learning as hypersurface reconstruction are discussed. Two extensions of the regularization approach are presented, along with the approach's corrections to splines, regularization, Bayes formulation, and clustering. The theory of regularization networks is generalized to a formulation that includes task-dependent clustering and dimensionality reduction. Applications of regularization networks are discussed. >

3,595 citations