scispace - formally typeset
Search or ask a question
Author

David M. A. Martin

Bio: David M. A. Martin is an academic researcher from University of Dundee. The author has contributed to research in topics: Tissue factor & Gene. The author has an hindex of 27, co-authored 44 publications receiving 17842 citations. Previous affiliations of David M. A. Martin include Hammersmith Hospital & J. Craig Venter Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: Jalview 2 is a system for interactive WYSIWYG editing, analysis and annotation of multiple sequence alignments that employs web services for sequence alignment, secondary structure prediction and the retrieval of alignments, sequences, annotation and structures from public databases and any DAS 1.53 compliant sequence or annotation server.
Abstract: Summary: Jalview Version 2 is a system for interactive WYSIWYG editing, analysis and annotation of multiple sequence alignments. Core features include keyboard and mouse-based editing, multiple views and alignment overviews, and linked structure display with Jmol. Jalview 2 is available in two forms: a lightweight Java applet for use in web applications, and a powerful desktop application that employs web services for sequence alignment, secondary structure prediction and the retrieval of alignments, sequences, annotation and structures from public databases and any DAS 1.53 compliant sequence or annotation server. Availability: The Jalview 2 Desktop application and JalviewLite applet are made freely available under the GPL, and can be downloaded from www.jalview.org Contact: g.j.barton@dundee.ac.uk

7,926 citations

Journal ArticleDOI
03 Oct 2002-Nature
TL;DR: The genome sequence of P. falciparum clone 3D7 is reported, which is the most (A + T)-rich genome sequenced to date and is being exploited in the search for new drugs and vaccines to fight malaria.
Abstract: The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.

4,312 citations

Journal ArticleDOI
Xun Xu1, Shengkai Pan1, Shifeng Cheng1, Bo Zhang1, Mu D1, Peixiang Ni1, Gengyun Zhang1, Shuang Yang1, Ruiqiang Li1, Jun Wang1, Gisella Orjeda2, Frank Guzman2, Torres M2, Roberto Lozano2, Olga Ponce2, Diana Martinez2, De la Cruz G3, Chakrabarti Sk3, Patil Vu3, Konstantin G. Skryabin4, Boris B. Kuznetsov4, Nikolai V. Ravin4, Tatjana V. Kolganova4, Alexey V. Beletsky4, Andrey V. Mardanov4, Di Genova A5, Dan Bolser5, David M. A. Martin5, Li G, Yang Y, Hanhui Kuang6, Hu Q6, Xiong X7, Gerard J. Bishop8, Boris Sagredo, Nilo Mejía, Zagorski W9, Robert Gromadka9, Jan Gawor9, Pawel Szczesny9, Sanwen Huang, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Youjun Zhang, Xie B, Du Y, Qu D, Merideth Bonierbale10, Marc Ghislain10, Herrera Mdel R, Giovanni Giuliano, Marco Pietrella, Gaetano Perrotta, Paolo Facella, O'Brien K11, Sergio Enrique Feingold, Barreiro Le, Massa Ga, Luis Aníbal Diambra12, Brett R Whitty13, Brieanne Vaillancourt13, Lin H13, Alicia N. Massa13, Geoffroy M13, Lundback S13, Dean DellaPenna13, Buell Cr14, Sanjeev Kumar Sharma14, David Marshall14, Robbie Waugh14, Glenn J. Bryan14, Destefanis M15, Istvan Nagy15, Dan Milbourne15, Susan Thomson16, Mark Fiers16, Jeanne M. E. Jacobs16, Kåre Lehmann Nielsen17, Mads Sønderkær17, Marina Iovene18, Giovana Augusta Torres18, Jiming Jiang18, Richard E. Veilleux19, Christian W. B. Bachem20, de Boer J20, Theo Borm20, Bjorn Kloosterman20, van Eck H20, Erwin Datema20, Hekkert Bt20, Aska Goverse20, van Ham Rc20, Richard G. F. Visser20 
10 Jul 2011-Nature
TL;DR: The potato genome sequence provides a platform for genetic improvement of this vital crop and predicts 39,031 protein-coding genes and presents evidence for at least two genome duplication events indicative of a palaeopolyploid origin.
Abstract: Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.

1,813 citations

Journal ArticleDOI
Matthew Berriman1, Elodie Ghedin2, Elodie Ghedin3, Christiane Hertz-Fowler1, Gaëlle Blandin2, Hubert Renauld1, Daniella Castanheira Bartholomeu2, Nicola Lennard1, Elisabet Caler2, N. Hamlin1, Brian J. Haas2, Ulrike Böhme1, Linda Hannick2, Martin Aslett1, Joshua Shallom2, Lucio Marcello4, Lihua Hou2, Bill Wickstead5, U. Cecilia M. Alsmark6, Claire Arrowsmith1, Rebecca Atkin1, Andrew Barron1, Frédéric Bringaud7, Karen Brooks1, Mark Carrington8, Inna Cherevach1, Tracey-Jane Chillingworth1, Carol Churcher1, Louise Clark1, Craig Corton1, Ann Cronin1, Robert L. Davies1, Jonathon Doggett1, Appolinaire Djikeng2, Tamara Feldblyum2, Mark C. Field8, Audrey Fraser1, Ian Goodhead1, Zahra Hance1, David Harper1, Barbara Harris1, Heidi Hauser1, Jessica B. Hostetler2, Al Ivens1, Kay Jagels1, David W. Johnson1, Justin Johnson2, Kristine Jones2, Arnaud Kerhornou1, Hean Koo2, Natasha Larke1, Scott M. Landfear9, Christopher Larkin2, Vanessa Leech8, Alexandra Line1, Angela Lord1, Annette MacLeod4, P. Mooney1, Sharon Moule1, David M. A. Martin10, Gareth W. Morgan11, Karen Mungall1, Halina Norbertczak1, Doug Ormond1, Grace Pai2, Christopher S. Peacock1, Jeremy Peterson2, Michael A. Quail1, Ester Rabbinowitsch1, Marie-Adèle Rajandream1, Chris P Reitter8, Steven L. Salzberg2, Mandy Sanders1, Seth Schobel2, Sarah Sharp1, Mark Simmonds1, Anjana J. Simpson2, Luke J. Tallon2, C. Michael R. Turner4, Andrew Tait4, Adrian Tivey1, Susan Van Aken2, Danielle Walker1, David Wanless2, Shiliang Wang2, Brian White1, Owen White2, Sally Whitehead1, John Woodward1, Jennifer R. Wortman2, Mark Raymond Adams12, T. Martin Embley6, Keith Gull5, Elisabetta Ullu13, J. David Barry4, Alan H. Fairlamb10, Fred R. Opperdoes14, Barclay G. Barrell1, John E. Donelson15, Neil Hall16, Neil Hall2, Claire M. Fraser2, Sara E. Melville8, Najib M. El-Sayed2, Najib M. El-Sayed3 
15 Jul 2005-Science
TL;DR: Comparisons of the cytoskeleton and endocytic trafficking systems of Trypanosoma brucei with those of humans and other eukaryotic organisms reveal major differences.
Abstract: African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including ∼900 pseudogenes and ∼1700 T. brucei–specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.

1,631 citations

Journal ArticleDOI
TL;DR: The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.
Abstract: The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.

678 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This version of MAFFT has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update.
Abstract: We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.

27,771 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
TL;DR: Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available, is presented.
Abstract: Summary: We present here Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available. B2G joints in one application GO annotation based on similarity searches with statistical analysis and highlighted visualization on directed acyclic graphs. This tool offers a suitable platform for functional genomics research in non-model species. B2G is an intuitive and interactive desktop application that allows monitoring and comprehension of the whole annotation and analysis process. Availability: Blast2GO is freely available via Java Web Start at http://www.blast2go.de Supplementary material:http://www.blast2go.de -> Evaluation Contact:[email protected]; [email protected]

10,092 citations

Journal ArticleDOI
TL;DR: Pfam as discussed by the authors is a widely used database of protein families, containing 14 831 manually curated entries in the current version, version 27.0, and has been updated several times since 2012.
Abstract: Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures.

9,415 citations