scispace - formally typeset
Search or ask a question
Author

David M. Aronoff

Bio: David M. Aronoff is an academic researcher from Vanderbilt University Medical Center. The author has contributed to research in topics: Receptor & Clostridium difficile. The author has an hindex of 48, co-authored 263 publications receiving 8307 citations. Previous affiliations of David M. Aronoff include University of Michigan & Eastern Michigan University.


Papers
More filters
Journal ArticleDOI
TL;DR: The anatomy of the cAMP axis, the mechanisms by which it controls phagocyte immune function, microbial strategies to dysregulate it, and its clinical relevance are reviewed.
Abstract: Cyclic adenosine monophosphate (cAMP) was the original “second messenger” to be discovered Its formation is promoted by adenylyl cyclase activation after ligation of G protein–coupled receptors by ligands including hormones, autocoids, prostaglandins, and pharmacologic agents Increases in intracellular cAMP generally suppress innate immune functions, including inflammatory mediator generation and the phagocytosis and killing of microbes The importance of the host cAMP axis in regulating antimicrobial defense is underscored by the fact that microbes have evolved virulence-enhancing strategies that exploit it Many clinical situations that predispose to infection are associated with increases in cAMP, and therapeutic strategies to interrupt cAMP generation or actions have immunostimulatory potential This article reviews the anatomy of the cAMP axis, the mechanisms by which it controls phagocyte immune function, microbial strategies to dysregulate it, and its clinical relevance

342 citations

Journal ArticleDOI
TL;DR: A negative regulatory role for PGE2 on the antimicrobial activity of AMs is supported, which has important implications for future efforts to prevent and treat bacterial pneumonia.
Abstract: Prostaglandin E(2) is a potent lipid mediator of inflammation that effects changes in cell functions through ligation of four distinct G protein-coupled receptors (E-prostanoid (EP)1, EP2, EP3, and EP4). During pneumonia, PGE(2) production is enhanced. In the present study, we sought to assess the effect of endogenously produced and exogenously added PGE(2) on FcRgamma-mediated phagocytosis of bacterial pathogens by alveolar macrophages (AMs), which are critical participants in lung innate immunity. We also sought to characterize the EP receptor signaling pathways responsible for these effects. PGE(2) (1-1000 nM) dose-dependently suppressed the phagocytosis by rat AMs of IgG-opsonized erythrocytes, immune serum-opsonized Klebsiella pneumoniae, and IgG-opsonized Escherichia coli. Conversely, phagocytosis was stimulated by pretreatment with the cyclooxygenase inhibitor indomethacin. PGE(2) suppression of phagocytosis was associated with enhanced intracellular cAMP production. Experiments using both forskolin (adenylate cyclase activator) and rolipram (phosphodiesterase IV inhibitor) confirmed the inhibitory effect of cAMP stimulation. Immunoblot analysis of rat AMs identified expression of only EP2 and EP3 receptors. The selective EP2 agonist butaprost, but neither the EP1/EP3 agonist sulprostone nor the EP4-selective agonist ONO-AE1-329, mimicked the effects of PGE(2) on phagocytosis and cAMP stimulation. Additionally, the EP2 antagonist AH-6809 abrogated the inhibitory effects of both PGE(2) and butaprost. We confirmed the specificity of our results by showing that AMs from EP2-deficient mice were resistant to the inhibitory effects of PGE(2). Our data support a negative regulatory role for PGE(2) on the antimicrobial activity of AMs, which has important implications for future efforts to prevent and treat bacterial pneumonia.

339 citations

Journal ArticleDOI
TL;DR: It has been established that the same inflammatory agent can induce either fever or hypothermia, depending on several factors, and that different mechanisms underlie different febrile phases.
Abstract: Systemic inflammation is accompanied by changes in body temperature, either fever or hypothermia. Over the past decade, the rat and mouse have become the predominant animal models, and new species-specific tools (recombinant antibodies and other proteins) and genetic manipulations have been applied to study fever and hypothermia. Remarkable progress has been achieved. It has been established that the same inflammatory agent can induce either fever or hypothermia, depending on several factors. It has also been established that experimental fevers are generally polyphasic, and that different mechanisms underlie different febrile phases. Signaling mechanisms of the most common pyrogen used, bacterial lipopolysaccharide (LPS), have been found to involve the Toll-like receptor 4. The roles of cytokines (such as interleukins-1beta and 6 and tumor necrosis factor-alpha) have been further detailed, and new early mediators (e.g., complement factor 5a and platelet-activating factor) have been proposed. Our understanding of how peripheral inflammatory messengers cross the blood-brain barrier (BBB) has changed. The view that the organum vasculosum of the lamina terminalis is the major port of entry for pyrogenic cytokines has lost its dominant position. The vagal theory has emerged and then fallen. Consensus has been reached that the BBB is not a divider preventing signal transduction, but rather the transducer itself. In the endothelial and perivascular cells of the BBB, upstream signaling molecules (e.g., pro-inflammatory cytokines) are switched to a downstream mediator, prostaglandin (PG) E2. An indispensable role of PGE2 in the febrile response to LPS has been demonstrated in studies with targeted disruption of genes encoding either PGE2-synthesizing enzymes or PGE2 receptors. The PGE2-synthesizing enzymes include numerous phospholipases (PL) A2, cyclooxygenases (COX)-1 and 2, and several newly discovered terminal PGE synthases (PGES). It has been realized that the "physiological," low-scale production of PGE2 and the accelerated synthesis of PGE2 in inflammation are catalyzed by different sets of these enzymes. The "inflammatory" set includes several isoforms of PLA2 and inducible isoforms of COX (COX-2) and microsomal (m) PGES (mPGES-1). The PGE2 receptors are multiple; one of them, EP3 is likely to be a primary "fever receptor." The effector pathways of fever start from EP3-bearing preoptic neurons. These neurons have been found to project to the raphe pallidus, where premotor sympathetic neurons driving thermogenesis in the brown fat and skin vaso-constriction are located. The rapid progress in our understanding of how thermoeffectors are controlled has revealed the inadequacy of set point-based definitions of thermoregulatory responses. New definitions (offered in this review) are based on the idea of balance of active and passive processes and use the term balance point. Inflammatory signaling and thermoeffector pathways involved in fever and hypothermia are modulated by neuropeptides and peptide hormones. Roles for several "new" peptides (e.g., leptin and orexins) have been proposed. Roles for several "old" peptides (e.g., arginine vasopressin, angiotensin II, and cholecystokinin) have been detailed or revised. New pharmacological tools to treat fevers (i.e., selective inhibitors of COX-2) have been rapidly introduced into clinical practice, but have not become magic bullets and appeared to have severe side effects. Several new targets for antipyretic therapy, including mPGES-1, have been identified.

308 citations

Journal ArticleDOI
01 Jul 2014-Mbio
TL;DR: Improved discriminatory ability of microbiome-based models confirms the theory that factors affecting the microbiome influence CDI, and demonstrates that several community types and the loss of several bacterial populations, including Bacteroides, Lachnospiraceae, and Ruminococcaceae, are associated with CDI.
Abstract: Antibiotic usage is the most commonly cited risk factor for hospital-acquired Clostridium difficile infections (CDI). The increased risk is due to disruption of the indigenous microbiome and a subsequent decrease in colonization resistance by the perturbed bacterial community; however, the specific changes in the microbiome that lead to increased risk are poorly understood. We developed statistical models that incorporated microbiome data with clinical and demographic data to better understand why individuals develop CDI. The 16S rRNA genes were sequenced from the feces of 338 individuals, including cases, diarrheal controls, and nondiarrheal controls. We modeled CDI and diarrheal status using multiple clinical variables, including age, antibiotic use, antacid use, and other known risk factors using logit regression. This base model was compared to models that incorporated microbiome data, using diversity metrics, community types, or specific bacterial populations, to identify characteristics of the microbiome associated with CDI susceptibility or resistance. The addition of microbiome data significantly improved our ability to distinguish CDI status when comparing cases or diarrheal controls to nondiarrheal controls. However, only when we assigned samples to community types was it possible to differentiate cases from diarrheal controls. Several bacterial species within the Ruminococcaceae, Lachnospiraceae, Bacteroides, and Porphyromonadaceae were largely absent in cases and highly associated with nondiarrheal controls. The improved discriminatory ability of our microbiome-based models confirms the theory that factors affecting the microbiome influence CDI. IMPORTANCE The gut microbiome, composed of the trillions of bacteria residing in the gastrointestinal tract, is responsible for a number of critical functions within the host. These include digestion, immune system stimulation, and colonization resistance. The microbiome's role in colonization resistance, which is the ability to prevent and limit pathogen colonization and growth, is key for protection against Clostridium difficile infections. However, the bacteria that are important for colonization resistance have not yet been elucidated. Using statistical modeling techniques and different representations of the microbiome, we demonstrated that several community types and the loss of several bacterial populations, including Bacteroides, Lachnospiraceae, and Ruminococcaceae, are associated with CDI. Our results emphasize the importance of considering the microbiome in mediating colonization resistance and may also direct the design of future multispecies probiotic therapies.

274 citations

Journal ArticleDOI
TL;DR: It is now clear that most antipyretics work by inhibiting the enzyme cyclooxygenase and reducing the levels of PGE(2) within the hypothalamus, a complex physiologic response triggered by infectious or aseptic stimuli.

250 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: A diagnosis of gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that is not clearly overt diabetes) or chemical-induced diabetes (such as in the treatment of HIV/AIDS or after organ transplantation)
Abstract: 1. Type 1 diabetes (due to b-cell destruction, usually leading to absolute insulin deficiency) 2. Type 2 diabetes (due to a progressive insulin secretory defect on the background of insulin resistance) 3. Gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that is not clearly overt diabetes) 4. Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young [MODY]), diseases of the exocrine pancreas (such as cystic fibrosis), and drugor chemical-induced diabetes (such as in the treatment of HIV/AIDS or after organ transplantation)

2,339 citations

Journal Article
TL;DR: Coppe et al. as mentioned in this paper showed that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy, including interleukin (IL)-6 and IL-8.
Abstract: PLoS BIOLOGY Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor Jean-Philippe Coppe 1 , Christopher K. Patil 1[ , Francis Rodier 1,2[ , Yu Sun 3 , Denise P. Mun oz 1,2 , Joshua Goldstein 1¤ , Peter S. Nelson 3 , Pierre-Yves Desprez 1,4 , Judith Campisi 1,2* 1 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Buck Institute for Age Research, Novato, California, United States of America, 3 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 4 California Pacific Medical Center Research Institute, San Francisco, California, United States of America Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA- damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. Citation: Coppe JP, Patil CK, Rodier F, Sun Y, Mun oz DP, et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): e301. doi:10.1371/journal.pbio.0060301 Introduction Cancer is a multistep disease in which cells acquire increasingly malignant phenotypes. These phenotypes are acquired in part by somatic mutations, which derange normal controls over cell proliferation (growth), survival, invasion, and other processes important for malignant tumorigenesis [1]. In addition, there is increasing evidence that the tissue microenvironment is an important determinant of whether and how malignancies develop [2,3]. Normal tissue environ- ments tend to suppress malignant phenotypes, whereas abnormal tissue environments such at those caused by inflammation can promote cancer progression. Cancer development is restrained by a variety of tumor suppressor genes. Some of these genes permanently arrest the growth of cells at risk for neoplastic transformation, a process termed cellular senescence [4–6]. Two tumor suppressor pathways, controlled by the p53 and p16INK4a/pRB proteins, regulate senescence responses. Both pathways integrate multiple aspects of cellular physiology and direct cell fate towards survival, death, proliferation, or growth arrest, depending on the context [7,8]. Several lines of evidence indicate that cellular senescence is a potent tumor-suppressive mechanism [4,9,10]. Many poten- tially oncogenic stimuli (e.g., dysfunctional telomeres, DNA PLoS Biology | www.plosbiology.org damage, and certain oncogenes) induce senescence [6,11]. Moreover, mutations that dampen the p53 or p16INK4a/pRB pathways confer resistance to senescence and greatly increase cancer risk [12,13]. Most cancers harbor mutations in one or both of these pathways [14,15]. Lastly, in mice and humans, a senescence response to strong mitogenic signals, such as those delivered by certain oncogenes, prevents premalignant lesions from progressing to malignant cancers [16–19]. Academic Editor: Julian Downward, Cancer Research UK, United Kingdom Received June 27, 2008; Accepted October 22, 2008; Published December 2, 2008 Copyright: O 2008 Coppe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: CM, conditioned medium; DDR, DNA damage response; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial–mesenchymal transition; GSE, genetic suppressor element; IL, interleukin; MIT, mitoxantrone; PRE, presenescent; PrEC, normal human prostate epithelial cell; REP, replicative exhaustion; SASP, senescence-associated secretory phenotype; SEN, senescent; shRNA, short hairpin RNA; XRA, X-irradiation * To whom correspondence should be addressed. E-mail: jcampisi@lbl.gov [ These authors contributed equally to this work. ¤ Current address: Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America December 2008 | Volume 6 | Issue 12 | e301

2,150 citations

Journal ArticleDOI
TL;DR: Characterization of the two COX isozymes is allowing the discrimination of the roles each play in physiological processes such as homeostatic maintenance of the gastrointestinal tract, renal function, blood clotting, embryonic implantation, parturition, pain, and fever.
Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) represent one of the most highly utilized classes of pharmaceutical agents in medicine. All NSAIDs act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective drugs. These pharmaceutical agents have quickly become established as important therapeutic medications with potentially fewer side effects than traditional NSAIDs. Additionally, characterization of the two COX isozymes is allowing the discrimination of the roles each play in physiological processes such as homeostatic maintenance of the gastrointestinal tract, renal function, blood clotting, embryonic implantation, parturition, pain, and fever. Of particular importance has been the investigation of COX-1 and -2 isozymic functions in cancer, dysregulation of inflammation, and Alzheimer's disease. More recently, additional heterogeneity in COX-related proteins has been described, with the finding of variants of COX-1 and COX-2 enzymes. These variants may function in tissue-specific physiological and pathophysiological processes and may represent important new targets for drug therapy.

1,605 citations