scispace - formally typeset
Search or ask a question
Author

David M. Bannerman

Other affiliations: University of Edinburgh
Bio: David M. Bannerman is an academic researcher from University of Oxford. The author has contributed to research in topics: Hippocampal formation & Hippocampus. The author has an hindex of 65, co-authored 192 publications receiving 17184 citations. Previous affiliations of David M. Bannerman include University of Edinburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: Gray and McNaughton's theory can in principle incorporate these apparently distinct hippocampal functions, and provides a plausible unitary account for the multiple facets of hippocampal function.

1,379 citations

Journal ArticleDOI
TL;DR: A medial superior frontal gyrus (SFG) region centred on the pre-supplementary motor area is involved in the selection of action sets whereas the anterior cingulate cortex has a fundamental role in relating actions to their consequences, both positive reinforcement outcomes and errors, and in guiding decisions about which actions are worth making.

1,012 citations

Journal ArticleDOI
TL;DR: The results suggest that delay and effort may exert distinct influences on decision making and may underlie apathetic and impulsive choice patterns in neurological and psychiatric illnesses.
Abstract: Behavioral ecologists and economists emphasize that potential costs, as well as rewards, influence decision making. Although neuroscientists assume that frontal areas are central to decision making, the evidence is contradictory and the critical region remains unclear. Here it is shown that frontal lobe contributions to cost-benefit decision making can be understood by positing the existence of two independent systems that make decisions about delay and effort costs. Anterior cingulate cortex lesions affected how much effort rats decided to invest for rewards. Orbitofrontal cortical lesions affected how long rats decided to wait for rewards. The pattern of disruption suggested the deficit could be related to impaired associative learning. Impairments of the two systems may underlie apathetic and impulsive choice patterns in neurological and psychiatric illnesses. Although the existence of two systems is not predicted by economic accounts of decision making, our results suggest that delay and effort may exert distinct influences on decision making.

582 citations

Journal ArticleDOI
09 Nov 1995-Nature
TL;DR: It is reported that the AP5-induced learning deficit can be almost completely prevented if rats are pretrained in a different watermaze before administration of the drug.
Abstract: Synaptic plasticity dependent on N-methyl-D-aspartate (NMDA) receptors is thought to underlie certain types of learning and memory. In support of this, both hippocampal long-term potentiation and spatial learning in a watermaze are impaired by blocking NMDA receptors with a selective antagonist D(-)-2-amino-5-phosphonovaleric acid (AP5) or by a mutation in one of the receptor subunits. Here we report, however, that the AP5-induced learning deficit can be almost completely prevented if rats are pretrained in a different watermaze before administration of the drug. This is not because of stimulus generalization, and occurs despite learning of the second task remaining hippocampus dependent. An AP5-induced learning deficit is, however, still seen if the animals are pretrained using a non-spatial task. Thus, despite its procedural simplicity, the watermaze may involve multiple cognitive processes with distinct pharmacological properties; although required for some component of spatial learning, NMDA receptors may not be required for encoding the spatial representation of a specific environment.

573 citations

Journal ArticleDOI
TL;DR: This work presents an account of hippocampal function that explains its role in both memory and anxiety and suggests that the synaptic plasticity-dependent memory hypothesis may be wrong.
Abstract: Recent studies using transgenic mice lacking NMDA receptors in the hippocampus challenge the long-standing hypothesis that hippocampal long-term potentiation-like mechanisms underlie the encoding and storage of associative long-term spatial memories. However, it may not be the synaptic plasticity-dependent memory hypothesis that is wrong; instead, it may be the role of the hippocampus that needs to be re-examined. We present an account of hippocampal function that explains its role in both memory and anxiety.

548 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
Ed S. Lein1, Michael Hawrylycz1, Nancy Ao2, Mikael Ayres1, Amy Bensinger1, Amy Bernard1, Andrew F. Boe1, Mark S. Boguski1, Mark S. Boguski3, Kevin S. Brockway1, Emi J. Byrnes1, Lin Chen1, Li Chen2, Tsuey-Ming Chen2, Mei Chi Chin1, Jimmy Chong1, Brian E. Crook1, Aneta Czaplinska2, Chinh Dang1, Suvro Datta1, Nick Dee1, Aimee L. Desaki1, Tsega Desta1, Ellen Diep1, Tim A. Dolbeare1, Matthew J. Donelan1, Hong-Wei Dong1, Jennifer G. Dougherty1, Ben J. Duncan1, Amanda Ebbert1, Gregor Eichele4, Lili K. Estin1, Casey Faber1, Benjamin A.C. Facer1, Rick Fields2, Shanna R. Fischer1, Tim P. Fliss1, Cliff Frensley1, Sabrina N. Gates1, Katie J. Glattfelder1, Kevin R. Halverson1, Matthew R. Hart1, John G. Hohmann1, Maureen P. Howell1, Darren P. Jeung1, Rebecca A. Johnson1, Patrick T. Karr1, Reena Kawal1, Jolene Kidney1, Rachel H. Knapik1, Chihchau L. Kuan1, James H. Lake1, Annabel R. Laramee1, Kirk D. Larsen1, Christopher Lau1, Tracy Lemon1, Agnes J. Liang2, Ying Liu2, Lon T. Luong1, Jesse Michaels1, Judith J. Morgan1, Rebecca J. Morgan1, Marty Mortrud1, Nerick Mosqueda1, Lydia Ng1, Randy Ng1, Geralyn J. Orta1, Caroline C. Overly1, Tu H. Pak1, Sheana Parry1, Sayan Dev Pathak1, Owen C. Pearson1, Ralph B. Puchalski1, Zackery L. Riley1, Hannah R. Rockett1, Stephen A. Rowland1, Joshua J. Royall1, Marcos J. Ruiz2, Nadia R. Sarno1, Katherine Schaffnit1, Nadiya V. Shapovalova1, Taz Sivisay1, Clifford R. Slaughterbeck1, Simon Smith1, Kimberly A. Smith1, Bryan I. Smith1, Andy J. Sodt1, Nick N. Stewart1, Kenda-Ruth Stumpf1, Susan M. Sunkin1, Madhavi Sutram1, Angelene Tam2, Carey D. Teemer1, Christina Thaller2, Carol L. Thompson1, Lee R. Varnam1, Axel Visel4, Axel Visel5, Ray M. Whitlock1, Paul Wohnoutka1, Crissa K. Wolkey1, Victoria Y. Wong1, Matthew J.A. Wood2, Murat B. Yaylaoglu2, Rob Young1, Brian L. Youngstrom1, Xu Feng Yuan1, Bin Zhang2, Theresa A. Zwingman1, Allan R. Jones1 
11 Jan 2007-Nature
TL;DR: An anatomically comprehensive digital atlas containing the expression patterns of ∼20,000 genes in the adult mouse brain is described, providing an open, primary data resource for a wide variety of further studies concerning brain organization and function.
Abstract: Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.

4,944 citations

Journal ArticleDOI
08 Aug 2003-Science
TL;DR: It is shown that disrupting antidepressant-induced neurogenesis blocks behavioral responses to antidepressants, suggesting that the behavioral effects of chronic antidepressants may be mediated by the stimulation of neuroGenesis in the hippocampus.
Abstract: Various chronic antidepressant treatments increase adult hippocampal neurogenesis, but the functional importance of this phenomenon remains unclear. Here, using genetic and radiological methods, we show that disrupting antidepressant-induced neurogenesis blocks behavioral responses to antidepressants. Serotonin 1A receptor null mice were insensitive to the neurogenic and behavioral effects of fluoxetine, a serotonin selective reuptake inhibitor. X-irradiation of a restricted region of mouse brain containing the hippocampus prevented the neurogenic and behavioral effects of two classes of antidepressants. These findings suggest that the behavioral effects of chronic antidepressants may be mediated by the stimulation of neurogenesis in the hippocampus.

4,116 citations

Journal ArticleDOI
TL;DR: The Morris water maze has proven to be a robust and reliable test that is strongly correlated with hippocampal synaptic plasticity and NMDA receptor function and trial-dependent, latent and discrimination learning can be assessed using modifications of the basic protocol.
Abstract: The Morris water maze (MWM) is a test of spatial learning for rodents that relies on distal cues to navigate from start locations around the perimeter of an open swimming arena to locate a submerged escape platform. Spatial learning is assessed across repeated trials and reference memory is determined by preference for the platform area when the platform is absent. Reversal and shift trials enhance the detection of spatial impairments. Trial-dependent, latent and discrimination learning can be assessed using modifications of the basic protocol. Search-to-platform area determines the degree of reliance on spatial versus non-spatial strategies. Cued trials determine whether performance factors that are unrelated to place learning are present. Escape from water is relatively immune from activity or body mass differences, making it ideal for many experimental models. The MWM has proven to be a robust and reliable test that is strongly correlated with hippocampal synaptic plasticity and NMDA receptor function. We present protocols for performing variants of the MWM test, from which results can be obtained from individual animals in as few as 6 days.

3,331 citations