scispace - formally typeset
Search or ask a question
Author

David M. Lowe

Bio: David M. Lowe is an academic researcher from Plymouth Marine Laboratory. The author has contributed to research in topics: Mytilus & Mussel. The author has an hindex of 40, co-authored 62 publications receiving 6636 citations. Previous affiliations of David M. Lowe include Natural Environment Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: The data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases and further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.
Abstract: Plastics debris is accumulating in the environment and is fragmenting into smaller pieces; as it does, the potential for ingestion by animals increases. The consequences of macroplastic debris for wildlife are well documented, however the impacts of microplastic (< 1 mm) are poorly understood. The mussel, Mytilus edulis, was used to investigate ingestion, translocation, and accumulation of this debris. Initial experiments showed that upon ingestion, microplastic accumulated in the gut. Mussels were subsequently exposed to treatments containing seawater and microplastic (3.0 or 9.6 microm). After transfer to clean conditions, microplastic was tracked in the hemolymph. Particles translocated from the gut to the circulatory system within 3 days and persisted for over 48 days. Abundance of microplastic was greatest after 12 days and declined thereafter. Smaller particles were more abundant than larger particles and our data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases. The short-term pulse exposure used here did not result in significant biological effects. However, plastics are exceedingly durable and so further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.

1,708 citations

Journal ArticleDOI
TL;DR: A selection of biomarkers of stress, genotoxicity and exposure usually employed in biomonitoring programmes is presented, together with a brief overview of new biomolecular approaches.
Abstract: The paper outlines a 2-tier approach for wide-scale biomonitoring programmes. To obtain a high level of standardization, we suggest the use of caged organisms (mussels or fish). An "early warning", highly sensitive, low-cost biomarker is employed in tier 1 (i.e. lysosomal membrane stability (LMS) and survival rate, a marker for highly polluted sites). Tier 2 is used only for animals sampled at sites in which LMS changes are evident and there is no mortality, with a complete battery of biomarkers assessing the levels of pollutant-induced stress syndrome. Possible approaches for integrating biomarker data in a synthetic index are discussed, along with our proposal to use a recently developed Expert System. The latter system allows a correct selection of biomarkers at different levels of biological organisation (molecular/cellular/tissue/organism) taking into account trends in pollutant-induced biomarker changes (increasing, decreasing, bell-shape). A selection of biomarkers of stress, genotoxicity and exposure usually employed in biomonitoring programmes is presented, together with a brief overview of new biomolecular approaches.

630 citations

Journal ArticleDOI
TL;DR: Damage to blood cell lysosomes was investigated in vitro in mussels Mytilus galloprovincialis collected from a series of sites in the Lagoon of Venice, Italy, and correlated with total tissue burdens for a range of contaminants.
Abstract: Damage to blood cell lysosomes was investigated in vitro in mussels Mytilus galloprovincialis collected from a series of sites in the Lagoon of Venice, Italy, and correlated with total tissue burdens for a range of contaminants. Retention of the cationic probe neutral red within the lysosomal compartment over time was used as a measure of damage to the lysosomal membrane. Multi-stepwise regression analysis was used to explore the relationship between altered cellular physiology and total body burdens of contaminants. Organochlorines (DDT, HCH and Aroclor 1254), mercury and cobalt were the principle factors involved in evoking pathological responses.

319 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that mytilus edulis larvae were held under five different experimental conditions for 8 weeks during which measurements of physiological condition, and certain cytological and cytochemical observations, were made.
Abstract: Mussels (Mytilus edulis L.) were held under five different experimental conditions for 8 weeks during which measurements of physiological condition, and certain cytological and cytochemical observations, were made. The mussels were then induced to spawn and the numbers of eggs released, the weights of these eggs, and their biochemical composition, were determined. During the experiment new gametes were developed by mussels under all conditions, but there was also a simultaneous regression and resorption of previously formed gametes, particularly in mussels under the greatest stress from high temperature and lack of food. The degree of stress experienced by the animals was measured as the scope for growth, or the energy available for somatic growth and the production of gametes. The distribution and activity of lysosomal enzymes within the Leydig tissue of the mantle suggested that autolysis of these cells occurred, coupled to the mobilization of glycogen for gametogenesis. Mussels under stress produced fewer and smaller eggs, in smaller follicles, than mussels not under stress. The biochemical composition of the eggs (as µg of biochemical component per mg of egg) did not vary consistently with adult condition, but eggs from stressed females had less lipid and protein than eggs from normal females. It is suggested that these relationships between the physiological condition of the adult, gametogenesis, fecundity and the biochemical content of the eggs are important for understanding the impact of the environment on ecological fitness.

301 citations

Journal ArticleDOI
TL;DR: Findings indicate that the functional integrity of the lysosomal membrane is impaired following hydrocarbon exposure and further illustrates that lyssomes are the target of toxic action of pollutants.

283 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.

4,706 citations

Journal ArticleDOI
TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Abstract: One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic...

4,044 citations

Journal ArticleDOI
TL;DR: Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota.

3,643 citations

Journal ArticleDOI
TL;DR: This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment and suggests standardized sampling procedures which allow the spatiotemporal comparison ofmicroplastic abundance across marine environments.
Abstract: This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are “items per m2” ...

3,119 citations

Journal ArticleDOI
TL;DR: It is shown that microplastic contaminates the shorelines at 18 sites worldwide representing six continents from the poles to the equator, with more material in densely populated areas, but no clear relationship between the abundance of miocroplastics and the mean size-distribution of natural particulates.
Abstract: Plastic debris 1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.

2,903 citations