scispace - formally typeset
Search or ask a question
Author

David N. Abram

Bio: David N. Abram is an academic researcher from Stanford University. The author has contributed to research in topics: Catalysis & X-ray photoelectron spectroscopy. The author has an hindex of 12, co-authored 14 publications receiving 4029 citations. Previous affiliations of David N. Abram include SLAC National Accelerator Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report new insights into the electrochemical reduction of CO2 on a metallic copper surface, enabled by the development of an experimental methodology with unprecedented sensitivity for the identification and quantification of CO 2 electroreduction products.
Abstract: We report new insights into the electrochemical reduction of CO2 on a metallic copper surface, enabled by the development of an experimental methodology with unprecedented sensitivity for the identification and quantification of CO2 electroreduction products. This involves a custom electrochemical cell designed to maximize product concentrations coupled to gas chromatography and nuclear magnetic resonance for the identification and quantification of gas and liquid products, respectively. We studied copper across a range of potentials and observed a total of 16 different CO2 reduction products, five of which are reported here for the first time, thus providing the most complete view of the reaction chemistry reported to date. Taking into account the chemical identities of the wide range of C1–C3 products generated and the potential-dependence of their turnover frequencies, mechanistic information is deduced. We discuss a scheme for the formation of multicarbon products involving enol-like surface intermediates as a possible pathway, accounting for the observed selectivity for eleven distinct C2+ oxygenated products including aldehydes, ketones, alcohols, and carboxylic acids.

2,184 citations

Journal ArticleDOI
TL;DR: A richer surface chemistry for transition metals than previously known is revealed and new insights to guide the development of improved CO2 conversion catalysts are provided.
Abstract: Fuels and industrial chemicals that are conventionally derived from fossil resources could potentially be produced in a renewable, sustainable manner by an electrochemical process that operates at room temperature and atmospheric pressure, using only water, CO2, and electricity as inputs. To enable this technology, improved catalysts must be developed. Herein, we report trends in the electrocatalytic conversion of CO2 on a broad group of seven transition metal surfaces: Au, Ag, Zn, Cu, Ni, Pt, and Fe. Contrary to conventional knowledge in the field, all metals studied are capable of producing methane or methanol. We quantify reaction rates for these two products and describe catalyst activity and selectivity in the framework of CO binding energies for the different metals. While selectivity toward methane or methanol is low for most of these metals, the fact that they are all capable of producing these products, even at a low rate, is important new knowledge. This study reveals a richer surface chemistry ...

1,136 citations

Journal ArticleDOI
TL;DR: In this article, a joint experimental and theoretical investigation of the electrochemical reduction of CO2 to HCOO- on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO−, was conducted.
Abstract: Increases in energy demand and in chemical production, together with the rise in CO2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO–) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO– production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO2 to HCOO– on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO–. Our results show that Sn electrodes produce HCOO–, carbon monoxide (CO), and hydrogen (H2) across a range of potentials and that HCOO– production becomes favored at potentials more negative than −0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% a...

540 citations

Journal ArticleDOI
TL;DR: By quantifying the potential-dependent behavior of all products, this work provides insights into kinetics and mechanisms at play, in particular involving the production of hydrocarbons and alcohols on catalysts with weak CO binding energy as well as the formation of a C-C bond required to produce ethanol.
Abstract: The electrochemical reduction of CO2 could allow for a sustainable process by which renewable energy from wind and solar are used directly in the production of fuels and chemicals. In this work we investigated the potential dependent activity and selectivity of the electrochemical reduction of CO2 on metallic silver surfaces under ambient conditions. Our results deepen our understanding of the surface chemistry and provide insight into the factors important to designing better catalysts for the reaction. The high sensitivity of our experimental methods for identifying and quantifying products of reaction allowed for the observation of six reduction products including CO and hydrogen as major products and formate, methane, methanol, and ethanol as minor products. By quantifying the potential-dependent behavior of all products, we provide insights into kinetics and mechanisms at play, in particular involving the production of hydrocarbons and alcohols on catalysts with weak CO binding energy as well as the formation of a C–C bond required to produce ethanol.

421 citations

Journal ArticleDOI
01 Oct 2018
TL;DR: In this paper, the discovery of an electrocatalyst composed of gold nanoparticles on a polycrystalline copper foil (Au/Cu) that is highly active for CO2 reduction to alcohols was reported.
Abstract: The discovery of materials for the electrochemical transformation of carbon dioxide into liquid fuels has the potential to impact large-scale storage of renewable energies and reduce carbon emissions. Here, we report the discovery of an electrocatalyst composed of gold nanoparticles on a polycrystalline copper foil (Au/Cu) that is highly active for CO2 reduction to alcohols. At low overpotentials, the Au/Cu electrocatalyst is over 100 times more selective for the formation of products containing C–C bonds versus methane or methanol, largely favouring the generation of alcohols over hydrocarbons. A combination of electrochemical testing and transport modelling supports the hypothesis that CO2 reduction on gold generates a high CO concentration on nearby copper, where CO is further reduced to alcohols such as ethanol and n-propanol under locally alkaline conditions. The bimetallic Au/Cu electrocatalyst exhibits synergistic activity and selectivity superior to gold, copper or AuCu alloys, and opens new possibilities for the development of CO2 reduction electrodes exploiting tandem catalysis mechanisms. The electrochemical transformation of CO2 into liquid fuels is a major challenge. Now, Jaramillo, Hahn and co-workers present a Au/Cu catalyst highly active to C2+ alcohols at low overpotentials as a result of a tandem mechanism where CO2 is reduced to CO on Au and further reduced to C2+ alcohols on nearby Cu.

416 citations


Cited by
More filters
Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts for water oxidation.
Abstract: Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm–2 per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing ...

4,808 citations

Journal ArticleDOI
TL;DR: Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.
Abstract: Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

2,894 citations

Journal ArticleDOI
TL;DR: The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
Abstract: This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO−, CH2O, CH4, H2C2O4/HC2O4−, C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution–electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.

2,205 citations

Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations