scispace - formally typeset
Search or ask a question
Author

David N. Kennedy

Bio: David N. Kennedy is an academic researcher from University of Massachusetts Medical School. The author has contributed to research in topics: Medicine & Adolescent health. The author has an hindex of 88, co-authored 396 publications receiving 48377 citations. Previous affiliations of David N. Kennedy include University of Massachusetts Amherst & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
31 Jan 2002-Neuron
TL;DR: In this paper, a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set is presented.

7,120 citations

Journal ArticleDOI
TL;DR: In this paper, a series of images were acquired continuously with the same imaging pulse sequence (either gradient echo or spin-echo inversion recovery) during task activation, and a significant increase in signal intensity (paired t test; P less than 0.001) of 1.8% +/- 0.9% was observed in the primary visual cortex (V1) of seven normal volunteers.
Abstract: Neuronal activity causes local changes in cerebral blood flow, blood volume, and blood oxygenation. Magnetic resonance imaging (MRI) techniques sensitive to changes in cerebral blood flow and blood oxygenation were developed by high-speed echo planar imaging. These techniques were used to obtain completely noninvasive tomographic maps of human brain activity, by using visual and motor stimulus paradigms. Changes in blood oxygenation were detected by using a gradient echo (GE) imaging sequence sensitive to the paramagnetic state of deoxygenated hemoglobin. Blood flow changes were evaluated by a spin-echo inversion recovery (IR), tissue relaxation parameter T1-sensitive pulse sequence. A series of images were acquired continuously with the same imaging pulse sequence (either GE or IR) during task activation. Cine display of subtraction images (activated minus baseline) directly demonstrates activity-induced changes in brain MR signal observed at a temporal resolution of seconds. During 8-Hz patterned-flash photic stimulation, a significant increase in signal intensity (paired t test; P less than 0.001) of 1.8% +/- 0.8% (GE) and 1.8% +/- 0.9% (IR) was observed in the primary visual cortex (V1) of seven normal volunteers. The mean rise-time constant of the signal change was 4.4 +/- 2.2 s for the GE images and 8.9 +/- 2.8 s for the IR images. The stimulation frequency dependence of visual activation agrees with previous positron emission tomography observations, with the largest MR signal response occurring at 8 Hz. Similar signal changes were observed within the human primary motor cortex (M1) during a hand squeezing task and in animal models of increased blood flow by hypercapnia. By using intrinsic blood-tissue contrast, functional MRI opens a spatial-temporal window onto individual brain physiology.

4,138 citations

Journal ArticleDOI
TL;DR: A technique for automatically assigning a neuroanatomical label to each location on a cortical surface model based on probabilistic information estimated from a manually labeled training set is presented, comparable in accuracy to manual labeling.
Abstract: We present a technique for automatically assigning a neuroanatomical label to each location on a cortical surface model based on probabilistic information estimated from a manually labeled training set. This procedure incorporates both geometric information derived from the cortical model, and neuroanatomical convention, as found in the training set. The result is a complete labeling of cortical sulci and gyri. Examples are given from two different training sets generated using different neuroanatomical conventions, illustrating the flexibility of the algorithm. The technique is shown to be comparable in accuracy to manual labeling.

3,880 citations

Journal ArticleDOI
TL;DR: A fully-automated segmentation method that uses manually labelled image data to provide anatomical training information and is assessed both quantitatively, using Leave-One-Out testing on the 336 training images, and qualitatively,Using an independent clinical dataset involving Alzheimer's disease.

2,047 citations

Journal ArticleDOI
01 Nov 1991-Science
TL;DR: This technique was used to generate the first functional magnetic resonance maps of human task activation, by using a visual stimulus paradigm, and localized increases in blood volume were detected in the primary visual cortex during photic stimulation.
Abstract: Knowledge of regional cerebral hemodynamics has widespread application for both physiological research and clinical assessment because of the well-established interrelation between physiological function, energy metabolism, and localized blood supply. A magnetic resonance technique was developed for quantitative imaging of cerebral hemodynamics, allowing for measurement of regional cerebral blood volume during resting and activated cognitive states. This technique was used to generate the first functional magnetic resonance maps of human task activation, by using a visual stimulus paradigm. During photic stimulation, localized increases in blood volume (32 +/- 10 percent, n = 7 subjects) were detected in the primary visual cortex. Center-of-mass coordinates and linear extents of brain activation within the plane of the calcarine fissure are reported.

1,790 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.

13,678 citations

Journal ArticleDOI
TL;DR: A baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF is identified, suggesting the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
Abstract: A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.

10,708 citations

Journal ArticleDOI
TL;DR: A package of computer programs for analysis and visualization of three-dimensional human brain functional magnetic resonance imaging (FMRI) results is described and techniques for automatically generating transformed functional data sets from manually labeled anatomical data sets are described.

10,002 citations