scispace - formally typeset
Search or ask a question
Author

David N. Shapiro

Bio: David N. Shapiro is an academic researcher from St. Jude Children's Research Hospital. The author has contributed to research in topics: Rhabdomyosarcoma & Alveolar rhabdomyosarcoma. The author has an hindex of 33, co-authored 53 publications receiving 7286 citations. Previous affiliations of David N. Shapiro include University of Tennessee & University of Tennessee Health Science Center.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
04 Mar 1994-Science
TL;DR: In the predicted hybrid protein, the amino terminus of nucleophosmin (NPM) is linked to the catalytic domain of anaplastic lymphoma kinase (ALK), and unscheduled expression of the truncated ALK may contribute to malignant transformation in these lymphomas.
Abstract: The 2;5 chromosomal translocation occurs in most anaplastic large-cell non-Hodgkin's lymphomas arising from activated T lymphocytes. This rearrangement was shown to fuse the NPM nucleolar phosphoprotein gene on chromosome 5q35 to a previously unidentified protein tyrosine kinase gene, ALK, on chromosome 2p23. In the predicted hybrid protein, the amino terminus of nucleophosmin (NPM) is linked to the catalytic domain of anaplastic lymphoma kinase (ALK). Expressed in the small intestine, testis, and brain but not in normal lymphoid cells, ALK shows greatest sequence similarity to the insulin receptor subfamily of kinases. Unscheduled expression of the truncated ALK may contribute to malignant transformation in these lymphomas.

2,260 citations

Journal Article
16 Mar 1995-Oncogene
TL;DR: A third Ewing's sarcoma translocation is identified, the t(7;22)(p22;q12), that fuses EWS to the human homologue of the murine ETS gene ER81, and this gene, designated ETV1 (for ETS Translocation Variant), is located on chromosome band 7p22.
Abstract: Most Ewing's sarcomas or related primitive neuroectodermal tumors have the (11;22)(q24;q12) or less frequently the (21;22)(q22;q12) translocation. These rearrangements fuse the EWS gene on chromosome 22q12 to either the FLI1 or ERG genes, both members of the ETS family of transcription factors. Simple variant chromosomal translocations have been occasionally described in these tumors. We have identified a third Ewing's sarcoma translocation, the t(7;22)(p22;q12), that fuses EWS to the human homologue of the murine ETS gene ER81. This gene, designated ETV1 (for ETS Translocation Variant), is located on chromosome band 7p22. Identical EWS nucleotide sequences found in the majority of EWS-FLI1 and EWS-ERG chimeric transcripts are fused to a portion of ETV1 encoding an ETS domain with sequence specific DNA-binding activity. These findings confirm that the fusion of EWS to different ETS family members can result in a similar tumor phenotype.

476 citations

Journal ArticleDOI
TL;DR: It is shown that c-met expression is markedly reduced in the lateral dermomyotome of Splotch embryos lacking Pax3, and a potential Pax3 binding site in the human c-MET promoter that may contribute to direct transcriptional regulation is identified.
Abstract: Pax3 is a transcription factor whose expression has been used as a marker of myogenic precursor cells arising in the lateral somite destined to migrate to and populate the limb musculature. Accruing evidence indicates that the embryologic origins of axial and appendicular muscles are distinct, and limb muscle abnormalities in both mice and humans harboring Pax3 mutations support this distinction. The mechanisms by which Pax3 affects limb muscle development are unknown. The tyrosine kinase receptor for hepatocyte growth factor/scatter factor encoded by the c-met protooncogene is also expressed in limb muscle progenitors and, like Pax-3, is required in the mouse for limb muscle development. Here, we show that c-met expression is markedly reduced in the lateral dermomyotome of Splotch embryos lacking Pax3. We show that Pax3 can stimulate c-met expression in cultured cells, and we identify a potential Pax3 binding site in the human c-MET promoter that may contribute to direct transcriptional regulation. In addition, we have found that several cell lines derived from patients with rhabdomyosarcomas caused by a t(2;13) chromosomal translocation activating PAX3 express c-MET, whereas those rhabdomyosarcoma cell lines examined without the translocation do not. These results are consistent with a model in which Pax3 modulates c-met expression in the lateral dermomyotome, a function that is required for the appropriate migration of these myogenic precursors to the limb where the ligand for c-met (hepatocyte growth factor/scatter factor) is expressed at high levels.

380 citations

Journal Article
TL;DR: Formation of chimeric transcription factors has now been implicated in diverse human tumors of myogenic, hematopoietic, neuroectodermal, and adipocytic origin, suggesting that transcriptional deregulation is a common mechanism of tumorigenesis.
Abstract: Alveolar rhabdomyosarcoma, a malignant tumor of skeletal muscle, is characterized by a chromosomal translocation, t(2;13)(q35;q14). This translocation is associated with a structural rearrangement of the gene encoding PAX3, a presumed transcriptional regulator expressed exclusively during embryogenesis. The breakpoint results in a fusion between PAX3 and a gene provisionally named ALV, a novel member of the forkhead family of transcription factors. In PAX3-ALV, the structural integrity of both PAX3 DNA-binding regions, the paired box and homeodomain, are retained while the putative transcriptional activation domain of PAX3 is replaced by the bisected forkhead DNA-binding domain of ALV. Formation of chimeric transcription factors has now been implicated in diverse human tumors of myogenic, hematopoietic, neuroectodermal, and adipocytic origin, suggesting that transcriptional deregulation is a common mechanism of tumorigenesis.

374 citations

Journal ArticleDOI
TL;DR: The isolation of three differentially spliced human IL-15Rα variants that are all capable of high affinity binding ofIL-15 are extended into the human system, suggesting a broader range of cellular targets for IL- 15.

371 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.
Abstract: Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myogenic cells. However, autologous bone marrow procurement has potential limitations. An alternate source of autologous adult stem cells that is obtainable in large quantities, under local anesthesia, with minimal discomfort would be advantageous. In this study, we determined if a population of stem cells could be isolated from human adipose tissue. Human adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), was processed to obtain a fibroblast-like population of cells or a processed lipoaspirate (PLA). These PLA cells can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of PLA cells are of mesodermal or mesenchymal origin with low levels of contaminating pericytes, endothelial cells, and smooth muscle cells. Finally, PLA cells differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, the data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

7,402 citations

Journal ArticleDOI
TL;DR: The ability to predict and circumvent drug resistance is likely to improve chemotherapy, and it has become apparent that resistance exists against every effective drug, even the authors' newest agents.
Abstract: Chemotherapeutics are the most effective treatment for metastatic tumours. However, the ability of cancer cells to become simultaneously resistant to different drugs--a trait known as multidrug resistance--remains a significant impediment to successful chemotherapy. Three decades of multidrug-resistance research have identified a myriad of ways in which cancer cells can elude chemotherapy, and it has become apparent that resistance exists against every effective drug, even our newest agents. Therefore, the ability to predict and circumvent drug resistance is likely to improve chemotherapy.

5,105 citations

Journal Article
TL;DR: The identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation is reported.
Abstract: Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, there is overwhelming evidence in some malignancies that the tumor clone is heterogeneous with respect to proliferation and differentiation. In human leukemia, the tumor clone is organized as a hierarchy that originates from rare leukemic stem cells that possess extensive proliferative and self-renewal potential, and are responsible for maintaining the tumor clone. We report here the identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation. The increased self-renewal capacity of the brain tumor stem cell (BTSC) was highest from the most aggressive clinical samples of medulloblastoma compared with low-grade gliomas. The BTSC was exclusively isolated with the cell fraction expressing the neural stem cell surface marker CD133. These CD133+ cells could differentiate in culture into tumor cells that phenotypically resembled the tumor from the patient. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC.

4,899 citations

Journal ArticleDOI
02 Aug 2007-Nature
TL;DR: It is shown that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells.
Abstract: Improvement in the clinical outcome of lung cancer is likely to be achieved by identification of the molecular events that underlie its pathogenesis. Here we show that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells. Mouse 3T3 fibroblasts forced to express this human fusion tyrosine kinase generated transformed foci in culture and subcutaneous tumours in nude mice. The EML4-ALK fusion transcript was detected in 6.7% (5 out of 75) of NSCLC patients examined; these individuals were distinct from those harbouring mutations in the epidermal growth factor receptor gene. Our data demonstrate that a subset of NSCLC patients may express a transforming fusion kinase that is a promising candidate for a therapeutic target as well as for a diagnostic molecular marker in NSCLC.

4,826 citations

Journal ArticleDOI
TL;DR: The mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI 3K/ c-AKT pathway promotes cell survival, and the current spectrum of c- akt targets and their roles in mediating c- Akt-dependent cell survival are reviewed.
Abstract: The programmed cell death that occurs as part of normal mammalian development was first observed nearly a century ago (Collin 1906). It has since been established that approximately half of all neurons in the neuroaxis and >99.9% of the total number of cells generated during the course of a human lifetime go on to die through a process of apoptosis (for review, see Datta and Greenberg 1998; Vaux and Korsmeyer 1999). The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. The purification in the 1950s of the nerve growth factor (NGF), which promotes the survival of sympathetic neurons, set the stage for the discovery that peptide trophic factors promote the survival of a wide variety of cell types in vitro and in vivo (Levi-Montalcini 1987). The profound biological consequences of growth factor (GF) suppression of apoptosis are exemplified by the critical role of target-derived neurotrophins in the survival of neurons and the maintenance of functional neuronal circuits. (Pettmann and Henderson 1998). Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 38-OH kinase (PI3K)/c-Akt kinase cascade. Several targets of the PI3K/c-Akt signaling pathway have been recently identified that may underlie the ability of this regulatory cascade to promote survival. These substrates include two components of the intrinsic cell death machinery, BAD and caspase 9, transcription factors of the forkhead family, and a kinase, IKK, that regulates the NF-kB transcription factor. This article reviews the mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI3K/c-Akt pathway promotes cell survival, and the current spectrum of c-Akt targets and their roles in mediating c-Akt-dependent cell survival.

4,260 citations