scispace - formally typeset
Search or ask a question
Author

David Navarro

Bio: David Navarro is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Aspergillus niger & Trichoderma reesei. The author has an hindex of 29, co-authored 74 publications receiving 2143 citations. Previous affiliations of David Navarro include University of Provence & Institut national de la recherche agronomique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, Olive oil residues were tested for their composition in simple phenolic compounds as a function of the extraction system, i.e., the three and two-phase centrifugation systems.

241 citations

Journal ArticleDOI
TL;DR: Two purified feruloyl esterases from Aspergillus niger, FAEA and FAEB were tested for their ability to release phenolic acids from coffee pulp, apple marc and wheat straw and show the ability of these enzymes to hydrolyze quinic esters and ester linkages between phenolic acid and lignin monomer.

155 citations

Journal ArticleDOI
TL;DR: This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignosine bioconversion process.
Abstract: Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

140 citations

Journal ArticleDOI
TL;DR: Proteomic analysis of fungal secretomes that significantly improved biomass degradation showed that the presence of proteins belonging to a putative LPMO family previously identified by genome analysis and awaiting experimental demonstration of activity was found, named AA16.
Abstract: Lignocellulosic biomass is considered as a promising alternative to fossil resources for the production of fuels, materials and chemicals. Efficient enzymatic systems are needed to degrade the plant cell wall and overcome its recalcitrance. A widely used producer of cellulolytic cocktails is the ascomycete Trichoderma reesei, but this organism secretes a limited set of enzymes. To improve the saccharification yields, one strategy is to upgrade the T. reesei enzyme cocktail with enzymes produced by other biomass-degrading filamentous fungi isolated from biodiversity. In this study, the enzymatic cocktails secreted by five strains from the genus Aspergillus (Aspergillus japonicus strains BRFM 405, 1487, 1489, 1490 and Aspergillus niger strain BRFM 430) were tested for their ability to boost a T. reesei reference cocktail for the saccharification of pretreated biomass. Proteomic analysis of fungal secretomes that significantly improved biomass degradation showed that the presence of proteins belonging to a putative LPMO family previously identified by genome analysis and awaiting experimental demonstration of activity. Members of this novel LPMO family, named AA16, are encountered in fungi and oomycetes with life styles oriented toward interactions with plant biomass. One AA16 protein from Aspergillus aculeatus (AaAA16) was produced to high level in Pichia pastoris. LPMO-type enzyme activity was demonstrated on cellulose with oxidative cleavage at the C1 position of the glucose unit. AaAA16 LPMO was found to significantly improve the activity of T. reesei CBHI on cellulosic substrates. Although Aspergillus spp. has been investigated for decades for their CAZymes diversity, we identified members of a new fungal LPMO family using secretomics and functional assays. Properties of the founding member of the AA16 family characterized herein could be of interest for use in biorefineries.

119 citations

Journal ArticleDOI
01 Nov 2014
TL;DR: This study screened 40 strains of Ascomycota and 26 strains of Basidiomycota, representing the distribution of fungal diversity of the CIRM-CF collection, in order to evaluate their potential for organic acid and ethanol production, and found that some of the studied strains have good predispositions to produce valuable molecules.
Abstract: Background: Filamentous fungi are well known for their ability to degrade lignocellulosic biomass and have a natural ability to convert certain products of biomass degradation, for example glucose, into various organic acids. Organic acids are suggested to give a competitive advantage to filamentous fungi over other organisms by decreasing the ambient pH. They also have an impact on the ecosystem by enhancing weathering and metal detoxification. Commercially, organic acids can be used as chemical intermediates or as synthons for the production of biodegradable polymers which could replace petroleum-based or synthetic chemicals. One of the advantages of filamentous fungi as biotechnological production platforms for synthetic biology is their ability to degrade vegetal biomass, which is a promising feedstock for the biotechnological production of organic acids. The Fungal Culture Collection of the International Centre of Microbial Resources (CIRM-CF), curated by our laboratory, contains more than 1600 strains of filamentous fungi, mainly Basidiomycetes and Ascomycetes. The natural biodiversity found in this collection is wide, with strains collected from around the world in different climatic conditions. This collection is mainly studied to unravel the arsenal of secreted lignocellulolytic enzymes available to the fungi in order to enhance biomass degradation. While the fungal biodiversity is a tremendous reservoir for “green” molecules production, its potentiality for organic acids production is not completely known. Results: In this study, we screened 40 strains of Ascomycota and 26 strains of Basidiomycota, representing the distribution of fungal diversity of the CIRM-CF collection, in order to evaluate their potential for organic acid and ethanol production, in a glucose liquid medium. We observed that most of the filamentous fungi are able to grow and acidify the medium. We were also able to discriminate two groups of filamentous fungi considering their organic acid production at day 6 of incubation. This first group represented fungi co-producing a wide variety of organic acids and ethanol at concentrations up to 4 g.L �1 and was composed of all the Aspergilli and only 3 other Ascomycota. The second group was composed of the remaining Ascomycota and all the Basidiomycota which produced mainly ethanol. Among the Basidiomycota, two strains produced oxalic acid and one strain produced gluconic and formic acid. Six strains of Aspergillus producing high concentrations of oxalic, citric and gluconic acids, and ethanol were selected for metabolism analysis. Conclusion: These results illustrate the versatility in metabolites production among the fungal kingdom. Moreover, we found that some of the studied strains have good predispositions to produce valuable molecules. These strains could be of great interest in the study ofmetabolism and may represent new models for synthetic biology or consolidated bioprocessing of biomass.

111 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new class introduced in the CAZy database is named “Auxiliary Activities” in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion and provides a better coverage of the full extent of the lignin degradation machinery.
Abstract: Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org ) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name “Auxiliary Activities” in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.

966 citations

Journal ArticleDOI
TL;DR: In this article, the structural characteristics and separation of lignin in the straws of corn, wheat, rice and flax are discussed, and the first attempt to generalize the information about the structure and processes for the separation of Lignin from hemicellulose and cellulose in lignocellulosic crop residues is made.

692 citations

Journal Article
TL;DR: In this paper, a Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution, and the skewness of electron density is found to be the best indicator of actual map quality.
Abstract: Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution.

691 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight explorations of value addition to coffee by-products which can be achieved with valorization strategy, integration of techniques and applications of bioengineering principles in food processing and waste management and secondly conserve environment with disposal problem accelerating both ecological and economical resources.
Abstract: Coffee is one of the popular beverages of the world and second largest traded commodity after petroleum. Coffee is cultivated in about 80 countries across the globe and entangles huge business worldwide. Coffee dispensation requires an elevated degree of processing know how and produces large amounts of processing by-products such as coffee pulp and husk, which have limited applications such as fertilizer, livestock feed, compost and such others. Biotechnological applications in the field of industrial residues management promote sustainable development of country's economy. The objectives pertaining to food processing by-products, waste and effluents include the recovery of fine chemicals and production of precious metabolites via chemical and biotechnological processes. Pre-treatments, followed by recovery procedures endow value-added products (natural antioxidants, vitamins, enzymes, cellulose, starch, lipids, proteins, pigments) of high significance to the pharmaceutical, cosmetic and food industries. With the background of high crop production in the upcoming years, there is an imperative need to counterpart this production with some utilization and industrial application of coffee by-products since coffee industry emerges enormous amounts of coffee by-products which are thriving nutrient resources. The present review highlights explorations of value addition to coffee by-products which can be achieved with valorization strategy, integration of techniques and applications of bioengineering principles in food processing and waste management and secondly conserve environment with disposal problem accelerating both ecological and economical resources.

684 citations