scispace - formally typeset
Search or ask a question
Author

David Nesvorný

Bio: David Nesvorný is an academic researcher from Southwest Research Institute. The author has contributed to research in topics: Asteroid & Planet. The author has an hindex of 74, co-authored 271 publications receiving 16188 citations. Previous affiliations of David Nesvorný include NASA Lunar Science Institute & Federal University of Rio de Janeiro.


Papers
More filters
Journal ArticleDOI
01 May 2005-Icarus
TL;DR: In this paper, a collisional evolution model (CoEM) was proposed to model the evolution of the main belt of the Earth and the Moon over the last 3 Gyr.

550 citations

Journal ArticleDOI
01 Dec 2009-Icarus
TL;DR: In this paper, the size frequency distribution (SFD) of the initial planetesimals is considered a free parameter in these simulations, and search for the one that produces at the end objects with a SFD that is consistent with Asteroid belt constraints.

550 citations

Journal ArticleDOI
01 Dec 2005-Icarus
TL;DR: This paper used a collisional evolution code to track the evolution of the main belt over 4.6 Gyr and found that only a small fraction of the fragments survived the dynamical depletion event described above.

493 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection.
Abstract: The zodiacal cloud is a thick circumsolar disk of small debris particles produced by asteroid collisions and comets. Their relative contribution and how particles of different sizes dynamically evolve to produce the observed phenomena of light scattering, thermal emission, and meteoroid impacts are unknown. Until now, zodiacal cloud models have been phenomenological in nature, composed of ad hoc components with properties not understood from basic physical processes. Here, we present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection. The model is quantitatively constrained by Infrared Astronomical Satellite (IRAS) observations of thermal emission, but also qualitatively consistent with other zodiacal cloud observations, with meteor observations, with spacecraft impact experiments, and with properties of recovered micrometeorites (MMs). We find that particles produced by Jupiterfamily comets (JFCs) are scattered by Jupiter before they are able to orbitally decouple from the planet and drift down to 1 AU. Therefore, the inclination distribution of JFC particles is broader than that of their source comets and leads to good fits to the broad latitudinal distribution of fluxes observed by IRAS. We find that 85%–95% of the observed mid-infrared emission is produced by particles from JFCs and 100 μm undergo a further collisional cascade with smaller fragments being progressively more affected by Poynting–Robertson (PR) drag. Upon reaching D 10 4 times brighter during the Late Heavy Bombardment (LHB) epoch ≈3.8 Gyr ago, when the outer planets scattered numerous comets into the inner solar system. The bright debris disks with a large 24 μm excess observed around mature stars may be an indication of massive cometary populations existing in those systems. We estimate that at least ∼10 22 , ∼2 × 10 21 , and ∼2 × 10 20 go f

490 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed nearly 104 numerical simulations of planetary instability starting from hundreds of different initial conditions and found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system.
Abstract: Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 104 numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M disk 50 M Earth), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e 55 0.01 compared to present e 55 = 0.044, where e 55 is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M disk 20 M Earth. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a 5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

357 citations


Cited by
More filters
Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
TL;DR: The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way.
Abstract: (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg$^2$ field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5$\sigma$ point-source depth in a single visit in $r$ will be $\sim 24.5$ (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg$^2$ with $\delta<+34.5^\circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg$^2$ region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to $r\sim27.5$. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.

2,738 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
13 Jun 2002-Nature
TL;DR: Two related molecules containing a Co ion bonded to polypyridyl ligands, attached to insulating tethers of different lengths are examined, enabling the fabrication of devices that exhibit either single-electron phenomena, such as Coulomb blockade or the Kondo effect.
Abstract: Using molecules as electronic components is a powerful new direction in the science and technology of nanometre-scale systems1. Experiments to date have examined a multitude of molecules conducting in parallel2,3, or, in some cases, transport through single molecules. The latter includes molecules probed in a two-terminal geometry using mechanically controlled break junctions4,5 or scanning probes6,7 as well as three-terminal single-molecule transistors made from carbon nanotubes8, C60 molecules9, and conjugated molecules diluted in a less-conducting molecular layer10. The ultimate limit would be a device where electrons hop on to, and off from, a single atom between two contacts. Here we describe transistors incorporating a transition-metal complex designed so that electron transport occurs through well-defined charge states of a single atom. We examine two related molecules containing a Co ion bonded to polypyridyl ligands, attached to insulating tethers of different lengths. Changing the length of the insulating tether alters the coupling of the ion to the electrodes, enabling the fabrication of devices that exhibit either single-electron phenomena, such as Coulomb blockade, or the Kondo effect.

1,831 citations

Journal ArticleDOI
26 May 2005-Nature
TL;DR: This model not only naturally explains the Late Heavy Bombardment, but also reproduces the observational constraints of the outer Solar System.
Abstract: The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.

1,686 citations