scispace - formally typeset
Search or ask a question
Author

David O. Ferguson

Bio: David O. Ferguson is an academic researcher from University of Michigan. The author has contributed to research in topics: DNA repair & Genome instability. The author has an hindex of 19, co-authored 20 publications receiving 5542 citations. Previous affiliations of David O. Ferguson include Harvard University & Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI
25 May 2006-Nature
TL;DR: Mechanistic differences between normal stem cells and cancer stem cells can thus be targeted to depletecancer stem cells without damaging normalstem cells.
Abstract: Recent advances have highlighted extensive phenotypic and functional similarities between normal stem cells and cancer stem cells. This raises the question of whether disease therapies can be developed that eliminate cancer stem cells without eliminating normal stem cells. Here we address this issue by conditionally deleting the Pten tumour suppressor gene in adult haematopoietic cells. This led to myeloproliferative disease within days and transplantable leukaemias within weeks. Pten deletion also promoted haematopoietic stem cell (HSC) proliferation. However, this led to HSC depletion via a cell-autonomous mechanism, preventing these cells from stably reconstituting irradiated mice. In contrast to leukaemia-initiating cells, HSCs were therefore unable to maintain themselves without Pten. These effects were mostly mediated by mTOR as they were inhibited by rapamycin. Rapamycin not only depleted leukaemia-initiating cells but also restored normal HSC function. Mechanistic differences between normal stem cells and cancer stem cells can thus be targeted to deplete cancer stem cells without damaging normal stem cells.

1,307 citations

Journal ArticleDOI
20 Apr 2000-Nature
TL;DR: It is shown that p53-deficiency rescues several aspects of the XRCC4-deficient phenotype, including embryonic lethality, neuronal apoptosis, and impaired cellular proliferation, but there was no significant rescue of impaired V(D)J recombination or lymphocyte development.
Abstract: XRCC4 is a non-homologous end-joining protein employed in DNA double strand break repair and in V(D)J recombination. In mice, XRCC4-deficiency causes a pleiotropic phenotype, which includes embryonic lethality and massive neuronal apoptosis. When DNA damage is not repaired, activation of the cell cycle checkpoint protein p53 can lead to apoptosis. Here we show that p53-deficiency rescues several aspects of the XRCC4-deficient phenotype, including embryonic lethality, neuronal apoptosis, and impaired cellular proliferation. However, there was no significant rescue of impaired V(D)J recombination or lymphocyte development. Although p53-deficiency allowed postnatal survival of XRCC4-deficient mice, they routinely succumbed to pro-B-cell lymphomas which had chromosomal translocations linking amplified c-myc oncogene and IgH locus sequences. Moreover, even XRCC4-deficient embryonic fibroblasts exhibited marked genomic instability including chromosomal translocations. Our findings support a crucial role for the non-homologous end-joining pathway as a caretaker of the mammalian genome, a role required both for normal development and for suppression of tumours.

564 citations

Journal ArticleDOI
08 Aug 2003-Cell
TL;DR: H2AX functions as a dosage-dependent suppressor of genomic instability and tumors in mice and maps to a cytogenetic region frequently altered in human cancers, possibly implicating similar functions in man.

497 citations

Journal ArticleDOI
TL;DR: In the context of Lig4 deficiency, embryonic lethality and neuronal apoptosis likely result from a p53-dependent response to unrepaired DNA damage, and neurons apoptosis and lymphocyte developmental defects can be mechanistically dissociated.

491 citations

Journal ArticleDOI
28 Jun 2002-Cell
TL;DR: It is shown that pro-B lymphomas in mice deficient for both p53 and nonhomologous end-joining (NHEJ) contain complicons that coamplify c-myc and IgH sequences, suggesting a general model for oncogenic complicon formation.

418 citations


Cited by
More filters
01 Apr 2012
TL;DR: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis as mentioned in this paper, and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration.
Abstract: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.

6,268 citations

Journal ArticleDOI
13 Apr 2012-Cell
TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.

5,792 citations

Journal ArticleDOI
17 May 2001-Nature
TL;DR: This review summarizes the main DNA caretaking systems and their impact on genome stability and carcinogenesis.
Abstract: The early notion that cancer is caused by mutations in genes critical for the control of cell growth implied that genome stability is important for preventing oncogenesis. During the past decade, knowledge about the mechanisms by which genes erode and the molecular machinery designed to counteract this time-dependent genetic degeneration has increased markedly. At the same time, it has become apparent that inherited or acquired deficiencies in genome maintenance systems contribute significantly to the onset of cancer. This review summarizes the main DNA caretaking systems and their impact on genome stability and carcinogenesis.

3,898 citations

Journal ArticleDOI
17 Nov 2006-Cell
TL;DR: Understanding of the origins and nature of cancer metastasis and the selection of traits that are advantageous to cancer cells is promoted.

3,863 citations

Journal ArticleDOI
TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Abstract: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.

3,641 citations