scispace - formally typeset
Search or ask a question
Author

David P. Lane

Bio: David P. Lane is an academic researcher from Lincoln's Inn. The author has contributed to research in topics: Antigen & Antibody. The author has an hindex of 3, co-authored 3 publications receiving 1045 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that overexpression of p53 is synonymous with mutation, but some mutations would not be detected by a simple immunohistochemical analysis.
Abstract: Immunohistological staining of primary colorectal carcinomas with antibodies specific to p53 demonstrated gross overexpression of the protein in approximately 50% of the malignant tumors examined. Benign adenomas were all negative for p53 overexpression. To determine the molecular basis for this overexpression we examined p53 protein expression in 10 colorectal cancer cell lines. Six of the cell lines expressed high levels of p53 in ELISA, cell-staining, and immunoprecipitation studies. Direct sequencing and chemical-mismatch-cleavage analysis of p53 cDNA by using the polymerase chain reaction in these cell lines showed that all cell lines that expressed high levels of p53 were synthesizing mRNAs that encoded mutant p53 proteins. In two of those four cell lines where p53 expression was lower, point mutations were still detected. Thus, we conclude that overexpression of p53 is synonymous with mutation, but some mutations would not be detected by a simple immunohistochemical analysis. Mutation of the p53 gene is one of the commonest genetic changes in the development of human colorectal cancer.

1,024 citations

Journal ArticleDOI
30 Jan 1980-Virology
TL;DR: The interaction of the two major forms of simian virus 40 (SV40) T-antigen, large-T and small-t, with antisera has been studied using immunoprecipitation followed by adsorption on to fixed Staphylococcus aureus Cowan 1.

31 citations

Journal ArticleDOI
15 Jan 1982-Virology
TL;DR: Serum containing a high titer of antibodies against SV40 T-antigen was produced in rabbits, using D2 protein as immunogen, demonstrating that these proteins share antigenic determinants.

4 citations


Cited by
More filters
Journal ArticleDOI
05 Jul 1991-Science
TL;DR: The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues as mentioned in this paper.
Abstract: Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.

8,063 citations

Journal ArticleDOI
04 Jan 2007-Nature
TL;DR: It is concluded that colorectal cancer is created and propagated by a small number of undifferentiated tumorigenic CD133+ cells, which should therefore be the target of future therapies.
Abstract: Colon carcinoma is the second most common cause of death from cancer. The isolation and characterization of tumorigenic colon cancer cells may help to devise novel diagnostic and therapeutic procedures. Although there is increasing evidence that a rare population of undifferentiated cells is responsible for tumour formation and maintenance, this has not been explored for colorectal cancer. Here, we show that tumorigenic cells in colon cancer are included in the high-density CD133+ population, which accounts for about 2.5% of the tumour cells. Subcutaneous injection of colon cancer CD133+ cells readily reproduced the original tumour in immunodeficient mice, whereas CD133- cells did not form tumours. Such tumours were serially transplanted for several generations, in each of which we observed progressively faster tumour growth without significant phenotypic alterations. Unlike CD133- cells, CD133+ colon cancer cells grew exponentially for more than one year in vitro as undifferentiated tumour spheres in serum-free medium, maintaining the ability to engraft and reproduce the same morphological and antigenic pattern of the original tumour. We conclude that colorectal cancer is created and propagated by a small number of undifferentiated tumorigenic CD133+ cells, which should therefore be the target of future therapies.

3,945 citations

Journal ArticleDOI
06 Jun 1991-Nature
TL;DR: The cell cycle is composed of a series of steps which can be negatively or postively regulated by various factors, chief among the negative regulators is the p53 protein, which can lead to cancer.
Abstract: The cell cycle is composed of a series of steps which can be negatively or positively regulated by various factors. Chief among the negative regulators is the p53 protein. Alteration or inactivation of p53 by mutation, or by its interactions with oncogene products of DNA tumour viruses, can lead to cancer. These mutations seem to be the most common genetic change in human cancers.

3,665 citations

Journal ArticleDOI
07 May 1993-Science
TL;DR: Molecular features of "familial" cancers were compared with those of sporadic colon cancers, and a mechanism for familial tumorigenesis different from that mediated by classic tumor suppressor genes is suggested.
Abstract: A predisposition to colorectal cancer is shown to be linked to markers on chromosome 2 in some families. Molecular features of "familial" cancers were compared with those of sporadic colon cancers. Neither the familial nor sporadic cancers showed loss of heterozygosity for chromosome 2 markers, and the incidence of mutations in KRAS, P53, and APC was similar in the two groups of tumors. Most of the familial cancers, however, had widespread alterations in short repeated DNA sequences, suggesting that numerous replication errors had occurred during tumor development. Thirteen percent of sporadic cancers had identical abnormalities and these cancers shared biologic properties with the familial cases. These data suggest a mechanism for familial tumorigenesis different from that mediated by classic tumor suppressor genes.

2,717 citations