scispace - formally typeset
Search or ask a question
Author

David P. Norton

Other affiliations: Harvard University, Louisiana State University, Tufts University  ...read more
Bio: David P. Norton is an academic researcher from University of Florida. The author has contributed to research in topics: Thin film & Pulsed laser deposition. The author has an hindex of 92, co-authored 549 publications receiving 66007 citations. Previous affiliations of David P. Norton include Harvard University & Louisiana State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed review of fabrication methods for obtaining device functionality from single ZnO nanorods is presented, where a key aspect is the use of sonication to facilitate transfer of the nanorod from the initial substrate on which they are grown to another substrate for device fabrication.
Abstract: The large surface area of ZnO nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for micro-lasers or memory arrays. In addition, they might be doped with transition metal (TM) ions to make spin-polarized light sources. To date, most of the work on ZnO nanostructures has focused on the synthesis methods and there have been only a few reports of the electrical characteristics. We review fabrication methods for obtaining device functionality from single ZnO nanorods. A key aspect is the use of sonication to facilitate transfer of the nanorods from the initial substrate on which they are grown to another substrate for device fabrication. Examples of devices fabricated using this method are briefly described, including metal-oxide semiconductor field effect depletion-mode transistors with good saturation behavior, a threshold voltage of ∼−3 V and a maximum transconductance of order 0.3 mS/mm and Pt Schottky diodes with excellent ideality factors of 1.1 at 25 °C and very low (1.5 × 10 −10 A, equivalent to 2.35 A cm −2 , at −10 V) reverse currents. The photoresponse showed only a minor component with long decay times (tens of seconds) thought to originate from surface states. These results show the ability to manipulate the electron transport in nanoscale ZnO devices.

562 citations

Journal ArticleDOI
TL;DR: A review of recent results in developing improved control of growth, doping, and fabrication processes for ZnO devices with possible applications to ultraviolet (UV) light emitters, spin functional devices, gas sensors, transparent electronics, and surface acoustic wave devices is given in this article.

558 citations

Journal ArticleDOI
TL;DR: In this article, a sputter-depositing clusters of Pd on the surface of a ZnO nanorod was used to detect hydrogen in the presence of air or pure O2.
Abstract: The sensitivity for detecting hydrogen with multiple ZnO nanorods is found to be greatly enhanced by sputter-depositing clusters of Pd on the surface. The resulting structures show a change in room- temperature resistance upon exposure to hydrogen concentrations in N2 of 10–500ppm of approximately a factor of 5 larger than without Pd. Pd-coated ZnO nanorods detected hydrogen down to 2.6% at 10ppm and >4.2% at 500ppm H2 in N2 after a 10min exposure. There was no response at room temperature to O2. Approximately 95% of the initial ZnO conductance after exposure to hydrogen was recovered within 20s by exposing the nanorods to either air or pure O2. This rapid and easy recoverability make the Pd-coated nanorods suitable for practical applications in hydrogen-selective sensing at ppm levels at room temperature with <0.4mW power consumption.

541 citations

Book
17 Jun 2008
TL;DR: In this paper, the authors describe a multistage system that enables companies to gain measurable benefits from their carefully formulated business strategy, such as SWOT analysis, vision formulation, and strategic change agendas.
Abstract: In a world of stiffening competition, business strategy is more crucial than ever. Yet most organizations struggle in this area--not with formulating strategy but with executing it, or putting their strategy into action. Owing to execution failures, companies realize just a fraction of the financial performance promised in their strategic plans. It doesn't have to be that way, maintain Robert Kaplan and David Norton in The Execution Premium. Building on their breakthrough works on strategy-focused organizations, the authors describe a multistage system that enables you to gain measurable benefits from your carefully formulated business strategy. This book shows you how to: Develop an effective strategy--with tools such as SWOT analysis, vision formulation, and strategic change agendas Plan execution of the strategy--through portfolios of strategic initiatives linked to strategy maps and Balanced Scorecards Put your strategy into action--by integrating operational tools such as process dashboards, rolling forecasts, and activity-based costing Test and update your strategy--using carefully designed management meetings to review operational and strategic data Drawing on extensive research and detailed case studies from a broad array of industries, The Execution Premium presents a systematic and proven framework for achieving the financial results promised by your strategy.

538 citations

Journal ArticleDOI
Stephen J. Pearton1, W. H. Heo1, M. Ivill1, David P. Norton1, T. Steiner 
TL;DR: A review of recent results on transition metal doping of electronic oxides such as ZnO, TiO 2, SnO2, BaTiO 3, Cu2O, SrTiO3 and KTaO3 is presented in this article.
Abstract: A review of recent results on transition metal doping of electronic oxides such as ZnO, TiO2, SnO2, BaTiO3, Cu2O, SrTiO3 and KTaO3 is presented. There is interest in achieving ferromagnetism with Curie temperatures above room temperature in such materials for applications in the field of spintronic devices, in which the spin of the carriers is exploited. The incorporation of several atomic per cent of the transition metals without creation of second phases appears possible under optimized synthesis conditions, leading to ferromagnetism. Pulsed laser deposition, reactive sputtering, molecular beam epitaxy and ion implantation have all been used to produce the oxide-based dilute magnetic materials. The mechanism is still under debate, with carrier-induced, double-exchange and bound magnetic polaron formation all potentially playing a role depending on the conductivity type and level in the material.

527 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: The rapid growth of research on organizational citizenship behaviors (OCBs) has resulted in some conceptual confusion about the nature of the construct, and made it difficult for all but the most avid readers to keep up with developments in this domain this paper.

5,183 citations

Journal ArticleDOI
TL;DR: In this article, the authors test the relationship between shareholders' value, stakeholder management, and social issue participation and find that, while the latter is positively associated with shareholders' wealth, the former is negatively associated with their value.
Abstract: We test the relationship between shareholder value, stakeholder management, and social issue participation. Building better relations with primary stakeholders like employees, customers, suppliers, and communities could lead to increased shareholder wealth by helping firms develop intangible, valuable assets which can be sources of competitive advantage. On the other hand, using corporate resources for social issues not related to primary stakeholders may not create value for shareholders. We test these propositions with data from S&P 500 firms and find evidence that stakeholder management leads to improved shareholder value, while social issue participation is negatively associated with shareholder value. Copyright © 2001 John Wiley & Sons, Ltd.

3,465 citations

Journal ArticleDOI
TL;DR: In this article, the status of zinc oxide as a semiconductor is discussed and the role of impurities and defects in the electrical conductivity of ZnO is discussed, as well as the possible causes of unintentional n-type conductivity.
Abstract: In the past ten years we have witnessed a revival of, and subsequent rapid expansion in, the research on zinc oxide (ZnO) as a semiconductor. Being initially considered as a substrate for GaN and related alloys, the availability of high-quality large bulk single crystals, the strong luminescence demonstrated in optically pumped lasers and the prospects of gaining control over its electrical conductivity have led a large number of groups to turn their research for electronic and photonic devices to ZnO in its own right. The high electron mobility, high thermal conductivity, wide and direct band gap and large exciton binding energy make ZnO suitable for a wide range of devices, including transparent thin-film transistors, photodetectors, light-emitting diodes and laser diodes that operate in the blue and ultraviolet region of the spectrum. In spite of the recent rapid developments, controlling the electrical conductivity of ZnO has remained a major challenge. While a number of research groups have reported achieving p-type ZnO, there are still problems concerning the reproducibility of the results and the stability of the p-type conductivity. Even the cause of the commonly observed unintentional n-type conductivity in as-grown ZnO is still under debate. One approach to address these issues consists of growing high-quality single crystalline bulk and thin films in which the concentrations of impurities and intrinsic defects are controlled. In this review we discuss the status of ZnO as a semiconductor. We first discuss the growth of bulk and epitaxial films, growth conditions and their influence on the incorporation of native defects and impurities. We then present the theory of doping and native defects in ZnO based on density-functional calculations, discussing the stability and electronic structure of native point defects and impurities and their influence on the electrical conductivity and optical properties of ZnO. We pay special attention to the possible causes of the unintentional n-type conductivity, emphasize the role of impurities, critically review the current status of p-type doping and address possible routes to controlling the electrical conductivity in ZnO. Finally, we discuss band-gap engineering using MgZnO and CdZnO alloys.

3,291 citations