scispace - formally typeset
Search or ask a question
Author

David P. Wilkinson

Bio: David P. Wilkinson is an academic researcher from University of British Columbia. The author has contributed to research in topics: Proton exchange membrane fuel cell & Catalysis. The author has an hindex of 59, co-authored 274 publications receiving 16534 citations. Previous affiliations of David P. Wilkinson include National Taiwan University & Johnson Matthey.


Papers
More filters
Journal ArticleDOI
TL;DR: More than 100 articles related to anode catalysts for the direct methanol fuel cell (DMFC) are reviewed, mainly focusing on the three most active areas: (1) progress in preparation methods of Pt-Ru catalysts with respect to activity improvement and utilization optimization; (2) preparation of novel carbon materials as catalyst supports to create a highly dispersed and stably supported catalysts; (3) exploration of new catalysts having a low noble metal content and non-noble metal elements through fast activity down-selection methods such as combinatorial methods.

1,607 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the current state of all solid-state lithium batteries with major focus on the material aspects, including inorganic ceramic and organic solid polymer electrolyte materials, and emphasized the importance of the electrolytes and their associated interfaces with electrodes as well as their effects on the battery performance.

1,217 citations

Journal ArticleDOI
TL;DR: A review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics is provided in this paper.

954 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of several operating conditions which can have a significant effect on the durability of PEFCs and direct methanol fuel cells, including: low reactant flows, high and low humidification levels, and high andlow temperatures.

751 citations


Cited by
More filters
Journal ArticleDOI
06 Feb 2009-Science
TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Abstract: The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of –80 millivolts and a current density of 4.1 milliamps per square centimeter at –0.22 volts, compared with –85 millivolts and 1.1 milliamps per square centimeter at –0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.

6,370 citations

Journal ArticleDOI
TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Abstract: 2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanesulfonyl)imide (LiIm) and Its Derivatives 4313

5,710 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations