scispace - formally typeset
Search or ask a question
Author

David Peel

Bio: David Peel is an academic researcher from Hobart Corporation. The author has contributed to research in topics: Mixture model & Population. The author has an hindex of 40, co-authored 71 publications receiving 23159 citations. Previous affiliations of David Peel include University of California, Irvine & University of Queensland.


Papers
More filters
BookDOI
28 Jan 2005
TL;DR: The important role of finite mixture models in statistical analysis of data is underscored by the ever-increasing rate at which articles on mixture applications appear in the statistical and geospatial literature.
Abstract: The important role of finite mixture models in the statistical analysis of data is underscored by the ever-increasing rate at which articles on mixture applications appear in the statistical and ge...

8,258 citations

Book
02 Oct 2000
TL;DR: The important role of finite mixture models in the statistical analysis of data is underscored by the ever-increasing rate at which articles on mixture applications appear in the mathematical and statistical literature.
Abstract: The important role of finite mixture models in the statistical analysis of data is underscored by the ever-increasing rate at which articles on mixture applications appear in the statistical and ge...

8,095 citations

Journal ArticleDOI
TL;DR: NeEstimator v2 includes three single‐sample estimators (updated versions of the linkage disequilibrium and heterozygote‐excess methods, and a new method based on molecular coancestry), as well as the two‐sample (moment‐based temporal) method.
Abstract: NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.

1,515 citations

Journal ArticleDOI
TL;DR: The use of the ECM algorithm to fit this t mixture model is described and examples of its use are given in the context of clustering multivariate data in the presence of atypical observations in the form of background noise.
Abstract: Normal mixture models are being increasingly used to model the distributions of a wide variety of random phenomena and to cluster sets of continuous multivariate data. However, for a set of data containing a group or groups of observations with longer than normal tails or atypical observations, the use of normal components may unduly affect the fit of the mixture model. In this paper, we consider a more robust approach by modelling the data by a mixture of t distributions. The use of the ECM algorithm to fit this t mixture model is described and examples of its use are given in the context of clustering multivariate data in the presence of atypical observations in the form of background noise.

903 citations

Journal ArticleDOI
TL;DR: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues, and relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classified tissues or with background and biological knowledge of these sets.
Abstract: Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.

571 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayesian multiple imputation (MI) are presented and may eventually extend the ML and MI methods that currently represent the state of the art.
Abstract: Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random (MAR) concept. They summarize the evidence against older procedures and, with few exceptions, discourage their use. They present, in both technical and practical language, 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayesian multiple imputation (MI). Newer developments are discussed, including some for dealing with missing data that are not MAR. Although not yet in the mainstream, these procedures may eventually extend the ML and MI methods that currently represent the state of the art.

10,568 citations

Journal ArticleDOI
TL;DR: Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test proved to be a very consistent indicator of classes across all of the models considered.
Abstract: Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, one unresolved issue in the application of mixture models is that there is not one commonly accepted statistical indicator for deciding on the number of classes in a study population. This article presents the results of a simulation study that examines the performance of likelihood-based tests and the traditionally used Information Criterion (ICs) used for determining the number of classes in mixture modeling. We look at the performance of these tests and indexes for 3 types of mixture models: latent class analysis (LCA), a factor mixture model (FMA), and a growth mixture models (GMM). We evaluate the ability of the tests and indexes to correctly identify the number of classes at three different sample sizes (n = 200, 500, 1,000). Whereas the Bayesian Information Criterion performed the best of the ICs, the bootstrap likelihood ratio test ...

7,716 citations

Journal ArticleDOI
TL;DR: Clustering algorithms for data sets appearing in statistics, computer science, and machine learning are surveyed, and their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts are illustrated.
Abstract: Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.

5,744 citations

Journal ArticleDOI
TL;DR: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
Abstract: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide a description of the algorithm, discuss the impact of the algorithm, and review current and further research on the algorithm. These 10 algorithms cover classification, clustering, statistical learning, association analysis, and link mining, which are all among the most important topics in data mining research and development.

4,944 citations

Journal ArticleDOI
TL;DR: This work reviews a general methodology for model-based clustering that provides a principled statistical approach to important practical questions that arise in cluster analysis, such as how many clusters are there, which clustering method should be used, and how should outliers be handled.
Abstract: Cluster analysis is the automated search for groups of related observations in a dataset. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures, and most clustering methods available in commercial software are also of this type. However, there is little systematic guidance associated with these methods for solving important practical questions that arise in cluster analysis, such as how many clusters are there, which clustering method should be used, and how should outliers be handled. We review a general methodology for model-based clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, minefield detection, cluster recovery from noisy data, and spatial density estimation. Finally, we mention limitations of the methodology and discuss recent development...

4,123 citations