scispace - formally typeset
Search or ask a question
Author

David Posada

Bio: David Posada is an academic researcher from University of Vigo. The author has contributed to research in topics: Phylogenetic tree & Coalescent theory. The author has an hindex of 62, co-authored 197 publications receiving 80926 citations. Previous affiliations of David Posada include University of East Anglia & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The program MODELTEST uses log likelihood scores to establish the model of DNA evolution that best fits the data.
Abstract: Summary: The program MODELTEST uses log likelihood scores to establish the model of DNA evolution that best fits the data. Availability: The MODELTEST package, including the source code and some documentation is available at http://bioag.byu.edu/zoology/crandall―lab/modeltest.html. Contact: dp47@email.byu.edu.

20,105 citations

Journal ArticleDOI
TL;DR: jModelTest 2: more models, new heuristics and parallel computing Diego Darriba, Guillermo L. Taboada, Ramón Doallo and David Posada.
Abstract: jModelTest 2: more models, new heuristics and parallel computing Diego Darriba, Guillermo L. Taboada, Ramón Doallo and David Posada Supplementary Table 1. New features in jModelTest 2 Supplementary Table 2. Model selection accuracy Supplementary Table 3. Mean square errors for model averaged estimates Supplementary Note 1. Hill-climbing hierarchical clustering algorithm Supplementary Note 2. Heuristic filtering Supplementary Note 3. Simulations from prior distributions Supplementary Note 4. Speed-up benchmark on real and simulated datasets

13,100 citations

Journal ArticleDOI
David Posada1
TL;DR: jModelTest is a new program for the statistical selection of models of nucleotide substitution based on "Phyml" that implements 5 different selection strategies, including "hierarchical and dynamical likelihood ratio tests," the "Akaike information criterion", the "Bayesian information criterion," and a "decision-theoretic performance-based" approach.
Abstract: jModelTest is a new program for the statistical selection of models of nucleotide substitution based on "Phyml" (Guindon and Gascuel 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52:696-704.). It implements 5 different selection strategies, including "hierarchical and dynamical likelihood ratio tests," the "Akaike information criterion," the "Bayesian information criterion," and a "decision-theoretic performance-based" approach. This program also calculates the relative importance and model-averaged estimates of substitution parameters, including a model-averaged estimate of the phylogeny. jModelTest is written in Java and runs under Mac OSX, Windows, and Unix systems with a Java Runtime Environment installed. The program, including documentation, can be freely downloaded from the software section at http://darwin.uvigo.es.

9,748 citations

Journal ArticleDOI
TL;DR: It is argued that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages.
Abstract: Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus (genus Carabus) ground beetles described by Sota and Vogler (2001). (AIC; Bayes factors; BIC; likelihood ratio tests; model averaging; model uncertainty; model selection; multimodel inference.) It is clear that models of nucleotide substitution (henceforth models of evolution) play a significant role in molecular phylogenetics, particularly in the context of distance, maximum likelihood (ML), and Bayesian es- timation. We know that the use of one or other model affects many, if not all, stages of phylogenetic inference. For example, estimates of phylogeny, substitution rates, bootstrap values, posterior probabilities, or tests of the molecular clock are clearly influenced by the model of evolution used in the analysis (Buckley, 2002; Buckley

3,712 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models, inferring ancestral states and sequences, and estimating evolutionary rates site-by-site.
Abstract: Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.

39,110 citations

Journal ArticleDOI
TL;DR: The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly, and provides more output options than previously, including samples of ancestral states, site rates, site dN/dS rations, branch rates, and node dates.
Abstract: Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

18,718 citations

Journal ArticleDOI
TL;DR: jModelTest 2: more models, new heuristics and parallel computing Diego Darriba, Guillermo L. Taboada, Ramón Doallo and David Posada.
Abstract: jModelTest 2: more models, new heuristics and parallel computing Diego Darriba, Guillermo L. Taboada, Ramón Doallo and David Posada Supplementary Table 1. New features in jModelTest 2 Supplementary Table 2. Model selection accuracy Supplementary Table 3. Mean square errors for model averaged estimates Supplementary Note 1. Hill-climbing hierarchical clustering algorithm Supplementary Note 2. Heuristic filtering Supplementary Note 3. Simulations from prior distributions Supplementary Note 4. Speed-up benchmark on real and simulated datasets

13,100 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
David Posada1
TL;DR: jModelTest is a new program for the statistical selection of models of nucleotide substitution based on "Phyml" that implements 5 different selection strategies, including "hierarchical and dynamical likelihood ratio tests," the "Akaike information criterion", the "Bayesian information criterion," and a "decision-theoretic performance-based" approach.
Abstract: jModelTest is a new program for the statistical selection of models of nucleotide substitution based on "Phyml" (Guindon and Gascuel 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52:696-704.). It implements 5 different selection strategies, including "hierarchical and dynamical likelihood ratio tests," the "Akaike information criterion," the "Bayesian information criterion," and a "decision-theoretic performance-based" approach. This program also calculates the relative importance and model-averaged estimates of substitution parameters, including a model-averaged estimate of the phylogeny. jModelTest is written in Java and runs under Mac OSX, Windows, and Unix systems with a Java Runtime Environment installed. The program, including documentation, can be freely downloaded from the software section at http://darwin.uvigo.es.

9,748 citations