scispace - formally typeset
Search or ask a question
Author

David R. Fuhrman

Bio: David R. Fuhrman is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Breaking wave & Turbulence. The author has an hindex of 29, co-authored 103 publications receiving 2979 citations. Previous affiliations of David R. Fuhrman include DHI Water & Environment & University of Copenhagen.


Papers
More filters
Journal ArticleDOI
TL;DR: OpenFoam as discussed by the authors is a CFD library for solving free surface Newtonian flows using the Reynolds averaged Navier-Stokes equations coupled with a volume of fluid method.
Abstract: SUMMARY The open-source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption method termed ‘wave relaxation zones’, on which a detailed account is given. The ability to use OpenFoam for the modelling of waves is demonstrated using two benchmark test cases, which show the ability to model wave propagation and wave breaking. Furthermore, the reflection coefficient from outlet relaxation zones is considered for a range of parameters. The toolbox is implemented in C++, and the flexibility in deriving new relaxation methods and implementing new wave theories along with other shapes of the relaxation zone is outlined. Subsequent to the publication of this paper, the toolbox has been made freely available through the OpenFoam-Extend Community. Copyright © 2011 John Wiley & Sons, Ltd.

852 citations

Journal ArticleDOI
TL;DR: In this paper, a series expansion from a rapidly spatially varying expansion level and the resulting general velocity formulation is given as a triple-summation of terms involving high derivatives of this expansion level.

153 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that most commonly used two-equation turbulence closure models are unconditionally, rather than conditionally, unstable in regions of nearly potential flow with finite strain, resulting in exponential growth of the turbulent kinetic energy and eddy viscosity.
Abstract: In previous computational fluid dynamics studies of breaking waves, there has been a marked tendency to severely over-estimate turbulence levels, both pre- and post-breaking. This problem is most likely related to the previously described (though not sufficiently well recognized) conditional instability of widely used turbulence models when used to close Reynolds-averaged Navier–Stokes (RANS) equations in regions of nearly potential flow with finite strain, resulting in exponential growth of the turbulent kinetic energy and eddy viscosity. While this problem has been known for nearly 20 years, a suitable and fundamentally sound solution has yet to be developed. In this work it is demonstrated that virtually all commonly used two-equation turbulence closure models are unconditionally, rather than conditionally, unstable in such regions. A new formulation of the is the dissipation.)

143 citations

Journal ArticleDOI
TL;DR: In this article, a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints, is presented.

141 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Book
24 Feb 2012
TL;DR: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software.
Abstract: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Followingare chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

2,372 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
TL;DR: OpenFoam as discussed by the authors is a CFD library for solving free surface Newtonian flows using the Reynolds averaged Navier-Stokes equations coupled with a volume of fluid method.
Abstract: SUMMARY The open-source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption method termed ‘wave relaxation zones’, on which a detailed account is given. The ability to use OpenFoam for the modelling of waves is demonstrated using two benchmark test cases, which show the ability to model wave propagation and wave breaking. Furthermore, the reflection coefficient from outlet relaxation zones is considered for a range of parameters. The toolbox is implemented in C++, and the flexibility in deriving new relaxation methods and implementing new wave theories along with other shapes of the relaxation zone is outlined. Subsequent to the publication of this paper, the toolbox has been made freely available through the OpenFoam-Extend Community. Copyright © 2011 John Wiley & Sons, Ltd.

852 citations

Journal ArticleDOI
TL;DR: In this article, a computational procedure has been developed for simulating non-hydrostatic, free-surface, rotational flows in one and two horizontal dimensions using SWASH.

575 citations