scispace - formally typeset
Search or ask a question
Author

David R. Jackson

Bio: David R. Jackson is an academic researcher from University of Houston. The author has contributed to research in topics: Microstrip & Microstrip antenna. The author has an hindex of 49, co-authored 390 publications receiving 10422 citations. Previous affiliations of David R. Jackson include University of Rennes & University of Houston System.


Papers
More filters
Journal ArticleDOI
23 Mar 2012
TL;DR: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs), a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure.
Abstract: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs). An LWA uses a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure. Such antennas may be uniform, quasi-uniform, or periodic. After reviewing the basic physics and operating principles, a summary of some recent advances for these types of structures is given. Recent advances include structures that can scan to endfire, structures that can scan through broadside, structures that are conformal to surfaces, and structures that incorporate power recycling or include active elements. Some of these novel structures are inspired by recent advances in the metamaterials area.

988 citations

Journal ArticleDOI
TL;DR: The method is extended to produce narrow patterns about the horizon, and directive patterns at two different angles, and the bandwidth limitation of the method is discussed.
Abstract: Resonance conditions for a substrate-superstrate printed antenna geometry which allow for large antenna gain are presented. Asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed. The method is extended to produce narrow patterns about the horizon, and directive patterns at two different angles.

594 citations

01 Nov 1984
TL;DR: In this article, a substrate-superstrate printed antenna geometry which allows for large antenna gain is presented, asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed.
Abstract: Resonance conditions for a substrate-superstrate printed antenna geometry which allow for large antenna gain are presented. Asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed. The method is extended to produce narrow patterns about the horizon, and directive patterns at two different angles.

568 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental effects of superstrate (cover) materials on printed circuits antennas are investigated and a general criterion is given for choosing a superstrate to optimize efficiency for the important case of nonmagnetic layers with the antenna at the interface.
Abstract: The fundamental effects of superstrate (cover) materials on printed circuits antennas are investigated. Substrate-superstrate resonance conditions are established which maximize antenna gain, radiation resistance, and radiation efficiency. Criteria are determined for material properties and dimensions for which surface waves are eliminated and a radiation efficiency due to substrate-superstrate effects of e_{s} = 100 percent is obtained. Criteria for nearly omnidirectional \bar{H} -plane patterns and nearly omnidirctional \bar{E} -plane patterns are presented. Finally, a general criterion is given for choosing a superstrate to optimize efficiency for the important case of nonmagnetic layers with the antenna at the interface.

445 citations

Journal ArticleDOI
TL;DR: In this article, a uniform slotted SIW leaky-wave antenna is designed that has good beam scanning from near broadside (though not exactly at broadside) to forward endfire.
Abstract: A novel slotted substrate integrated waveguide (SIW) leaky-wave antenna is proposed. This antenna works in the TE10 mode of the SIW. Leakage is obtained by introducing a periodic set of transverse slots on the top of the SIW, which interrupt the current flow on the top wall. It is seen that three modes (a leaky mode, a proper waveguide mode, and a surface-wave-like mode) can all propagate on this structure. The wavenumbers of the modes are calculated theoretically and are numerically evaluated by HFSS simulation. The leakage loss, dielectric loss, and conductor loss are also analyzed. A uniform slotted SIW leaky-wave antenna is designed that has good beam scanning from near broadside (though not exactly at broadside) to forward endfire. This type of SIW leaky-wave antenna has a wide impedance bandwidth and a narrow beam that scans with frequency. Measured results are consistent with the simulation and the theoretical analysis.

405 citations


Cited by
More filters
Book
31 Jul 1997
TL;DR: This book explores the meta-heuristics approach called tabu search, which is dramatically changing the authors' ability to solve a host of problems that stretch over the realms of resource planning, telecommunications, VLSI design, financial analysis, scheduling, spaceplanning, energy distribution, molecular engineering, logistics, pattern classification, flexible manufacturing, waste management,mineral exploration, biomedical analysis, environmental conservation and scores of other problems.
Abstract: From the Publisher: This book explores the meta-heuristics approach called tabu search, which is dramatically changing our ability to solve a hostof problems that stretch over the realms of resource planning,telecommunications, VLSI design, financial analysis, scheduling, spaceplanning, energy distribution, molecular engineering, logistics,pattern classification, flexible manufacturing, waste management,mineral exploration, biomedical analysis, environmental conservationand scores of other problems. The major ideas of tabu search arepresented with examples that show their relevance to multipleapplications. Numerous illustrations and diagrams are used to clarifyprinciples that deserve emphasis, and that have not always been wellunderstood or applied. The book's goal is to provide ''hands-on' knowledge and insight alike, rather than to focus exclusively eitheron computational recipes or on abstract themes. This book is designedto be useful and accessible to researchers and practitioners inmanagement science, industrial engineering, economics, and computerscience. It can appropriately be used as a textbook in a masterscourse or in a doctoral seminar. Because of its emphasis on presentingideas through illustrations and diagrams, and on identifyingassociated practical applications, it can also be used as asupplementary text in upper division undergraduate courses. Finally, there are many more applications of tabu search than canpossibly be covered in a single book, and new ones are emerging everyday. The book's goal is to provide a grounding in the essential ideasof tabu search that will allow readers to create successfulapplications of their own. Along with the essentialideas,understanding of advanced issues is provided, enabling researchers togo beyond today's developments and create the methods of tomorrow.

6,373 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the use of radar interferometry to measure changes in the Earth's surface has exploded in the early 1990s, and a practical summary explains the techniques for calculating and manipulating interferograms from various radar instruments, including the four satellites currently in orbit: ERS-1, ERS2, JERS-1 and RADARSAT.
Abstract: Geophysical applications of radar interferometry to measure changes in the Earth's surface have exploded in the early 1990s. This new geodetic technique calculates the interference pattern caused by the difference in phase between two images acquired by a spaceborne synthetic aperture radar at two distinct times. The resulting interferogram is a contour map of the change in distance between the ground and the radar instrument. These maps provide an unsurpassed spatial sampling density (∼100 pixels km−2), a competitive precision (∼1 cm), and a useful observation cadence (1 pass month−1). They record movements in the crust, perturbations in the atmosphere, dielectric modifications in the soil, and relief in the topography. They are also sensitive to technical effects, such as relative variations in the radar's trajectory or variations in its frequency standard. We describe how all these phenomena contribute to an interferogram. Then a practical summary explains the techniques for calculating and manipulating interferograms from various radar instruments, including the four satellites currently in orbit: ERS-1, ERS-2, JERS-1, and RADARSAT. The next chapter suggests some guidelines for interpreting an interferogram as a geophysical measurement: respecting the limits of the technique, assessing its uncertainty, recognizing artifacts, and discriminating different types of signal. We then review the geophysical applications published to date, most of which study deformation related to earthquakes, volcanoes, and glaciers using ERS-1 data. We also show examples of monitoring natural hazards and environmental alterations related to landslides, subsidence, and agriculture. In addition, we consider subtler geophysical signals such as postseismic relaxation, tidal loading of coastal areas, and interseismic strain accumulation. We conclude with our perspectives on the future of radar interferometry. The objective of the review is for the reader to develop the physical understanding necessary to calculate an interferogram and the geophysical intuition necessary to interpret it.

2,319 citations

01 Jan 1992
TL;DR: In this article, a brief overview of the basic characteristics of microstrip antennas is given, and the most significant developments in microstrip antenna technology have been made in the last several years.
Abstract: Microstrip antennas have been one of the most innovative topics in antenna theory and design in recent years, and are increasingly finding application in a wide range of modern microwave systems. This paper begins with a brief overview of the basic characteristics of microstrip antennas, and then concentrates on the most significant developments in microstrip antenna technology that have been made in the last several years. Emphasis is on new antenna configurations for improved electrical performance and manufacturability and on advances in the analytical modeling of microstrip antennas and arrays. >

1,604 citations

Journal ArticleDOI
TL;DR: In this paper, a mushroom-like E-plane coupled E-strip antenna array on a thick and high permittivity substrate has been analyzed using the finite-difference time-domain (FDTD) method.
Abstract: Utilization of electromagnetic band-gap (EBG) structures is becoming attractive in the electromagnetic and antenna community. In this paper, a mushroom-like EBG structure is analyzed using the finite-difference time-domain (FDTD) method. Its band-gap feature of surface-wave suppression is demonstrated by exhibiting the near field distributions of the electromagnetic waves. The mutual coupling of microstrip antennas is parametrically investigated, including both the E and H coupling directions, different substrate thickness, and various dielectric constants. It is observed that the E-plane coupled microstrip antenna array on a thick and high permittivity substrate has a strong mutual coupling due to the pronounced surface waves. Therefore, an EBG structure is inserted between array elements to reduce the mutual coupling. This idea has been verified by both the FDTD simulations and experimental results. As a result, a significant 8 dB mutual coupling reduction is noticed from the measurements.

1,394 citations