scispace - formally typeset
Search or ask a question
Author

David R. Karger

Other affiliations: Stanford University, Akamai Technologies, Bell Labs  ...read more
Bio: David R. Karger is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Semantic Web & User interface. The author has an hindex of 95, co-authored 349 publications receiving 53806 citations. Previous affiliations of David R. Karger include Stanford University & Akamai Technologies.


Papers
More filters
Proceedings ArticleDOI
27 Aug 2001
TL;DR: Results from theoretical analysis, simulations, and experiments show that Chord is scalable, with communication cost and the state maintained by each node scaling logarithmically with the number of Chord nodes.
Abstract: A fundamental problem that confronts peer-to-peer applications is to efficiently locate the node that stores a particular data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto a node. Data location can be easily implemented on top of Chord by associating a key with each data item, and storing the key/data item pair at the node to which the key maps. Chord adapts efficiently as nodes join and leave the system, and can answer queries even if the system is continuously changing. Results from theoretical analysis, simulations, and experiments show that Chord is scalable, with communication cost and the state maintained by each node scaling logarithmically with the number of Chord nodes.

10,286 citations

Journal ArticleDOI
TL;DR: Results from theoretical analysis and simulations show that Chord is scalable: Communication cost and the state maintained by each node scale logarithmically with the number of Chord nodes.
Abstract: A fundamental problem that confronts peer-to-peer applications is the efficient location of the node that stores a desired data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto a node. Data location can be easily implemented on top of Chord by associating a key with each data item, and storing the key/data pair at the node to which the key maps. Chord adapts efficiently as nodes join and leave the system, and can answer queries even if the system is continuously changing. Results from theoretical analysis and simulations show that Chord is scalable: Communication cost and the state maintained by each node scale logarithmically with the number of Chord nodes.

3,518 citations

Journal ArticleDOI
TL;DR: This work presents a distributed random linear network coding approach for transmission and compression of information in general multisource multicast networks, and shows that this approach can take advantage of redundant network capacity for improved success probability and robustness.
Abstract: We present a distributed random linear network coding approach for transmission and compression of information in general multisource multicast networks. Network nodes independently and randomly select linear mappings from inputs onto output links over some field. We show that this achieves capacity with probability exponentially approaching 1 with the code length. We also demonstrate that random linear coding performs compression when necessary in a network, generalizing error exponents for linear Slepian-Wolf coding in a natural way. Benefits of this approach are decentralized operation and robustness to network changes or link failures. We show that this approach can take advantage of redundant network capacity for improved success probability and robustness. We illustrate some potential advantages of random linear network coding over routing in two examples of practical scenarios: distributed network operation and networks with dynamically varying connections. Our derivation of these results also yields a new bound on required field size for centralized network coding on general multicast networks

2,806 citations

Proceedings ArticleDOI
04 May 1997
TL;DR: A family of caching protocols for distrib-uted networks that can be used to decrease or eliminate the occurrence of hot spots in the network, based on a special kind of hashing that is called consistent hashing.
Abstract: We describe a family of caching protocols for distrib-uted networks that can be used to decrease or eliminate the occurrence of hot spots in the network. Our protocols are particularly designed for use with very large networks such as the Internet, where delays caused by hot spots can be severe, and where it is not feasible for every server to have complete information about the current state of the entire network. The protocols are easy to implement using existing network protocols such as TCP/IP, and require very little overhead. The protocols work with local control, make efficient use of existing resources, and scale gracefully as the network grows. Our caching protocols are based on a special kind of hashing that we call consistent hashing. Roughly speaking, a consistent hash function is one which changes minimally as the range of the function changes. Through the development of good consistent hash functions, we are able to develop caching protocols which do not require users to have a current or even consistent view of the network. We believe that consistent hash functions may eventually prove to be useful in other applications such as distributed name servers and/or quorum systems.

2,179 citations

Proceedings ArticleDOI
01 Aug 2000
TL;DR: GLS combined with geographic forwarding allows the construction of ad hoc mobile networks that scale to a larger number of nodes than possible with previous work, and compares favorably with Dynamic Source Routing.
Abstract: GLS is a new distributed location service which tracks mobile node locations. GLS combined with geographic forwarding allows the construction of ad hoc mobile networks that scale to a larger number of nodes than possible with previous work. GLS is decentralized and runs on the mobile nodes themselves, requiring no fixed infrastructure. Each mobile node periodically updates a small set of other nodes (its location servers) with its current location. A node sends its position updates to its location servers without knowing their actual identities, assisted by a predefined ordering of node identifiers and a predefined geographic hierarchy. Queries for a mobile node's location also use the predefined identifier ordering and spatial hierarchy to find a location server for that node.Experiments using the ns simulator for up to 600 mobile nodes show that the storage and bandwidth requirements of GLS grow slowly with the size of the network. Furthermore, GLS tolerates node failures well: each failure has only a limited effect and query performance degrades gracefully as nodes fail and restart. The query performance of GLS is also relatively insensitive to node speeds. Simple geographic forwarding combined with GLS compares favorably with Dynamic Source Routing (DSR): in larger networks (over 200 nodes) our approach delivers more packets, but consumes fewer network resources.

1,769 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

Proceedings ArticleDOI
27 Aug 2001
TL;DR: Results from theoretical analysis, simulations, and experiments show that Chord is scalable, with communication cost and the state maintained by each node scaling logarithmically with the number of Chord nodes.
Abstract: A fundamental problem that confronts peer-to-peer applications is to efficiently locate the node that stores a particular data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto a node. Data location can be easily implemented on top of Chord by associating a key with each data item, and storing the key/data item pair at the node to which the key maps. Chord adapts efficiently as nodes join and leave the system, and can answer queries even if the system is continuously changing. Results from theoretical analysis, simulations, and experiments show that Chord is scalable, with communication cost and the state maintained by each node scaling logarithmically with the number of Chord nodes.

10,286 citations

Journal ArticleDOI
Jon Kleinberg1
TL;DR: This work proposes and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of “hub pages” that join them together in the link structure, and has connections to the eigenvectors of certain matrices associated with the link graph.
Abstract: The network structure of a hyperlinked environment can be a rich source of information about the content of the environment, provided we have effective means for understanding it. We develop a set of algorithmic tools for extracting information from the link structures of such environments, and report on experiments that demonstrate their effectiveness in a variety of context on the World Wide Web. The central issue we address within our framework is the distillation of broad search topics, through the discovery of “authorative” information sources on such topics. We propose and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of “hub pages” that join them together in the link structure. Our formulation has connections to the eigenvectors of certain matrices associated with the link graph; these connections in turn motivate additional heuristrics for link-based analysis.

8,328 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Book ChapterDOI
TL;DR: Pastry as mentioned in this paper is a scalable, distributed object location and routing substrate for wide-area peer-to-peer ap- plications, which performs application-level routing and object location in a po- tentially very large overlay network of nodes connected via the Internet.
Abstract: This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing substrate for wide-area peer-to-peer ap- plications. Pastry performs application-level routing and object location in a po- tentially very large overlay network of nodes connected via the Internet. It can be used to support a variety of peer-to-peer applications, including global data storage, data sharing, group communication and naming. Each node in the Pastry network has a unique identifier (nodeId). When presented with a message and a key, a Pastry node efficiently routes the message to the node with a nodeId that is numerically closest to the key, among all currently live Pastry nodes. Each Pastry node keeps track of its immediate neighbors in the nodeId space, and notifies applications of new node arrivals, node failures and recoveries. Pastry takes into account network locality; it seeks to minimize the distance messages travel, according to a to scalar proximity metric like the number of IP routing hops. Pastry is completely decentralized, scalable, and self-organizing; it automatically adapts to the arrival, departure and failure of nodes. Experimental results obtained with a prototype implementation on an emulated network of up to 100,000 nodes confirm Pastry's scalability and efficiency, its ability to self-organize and adapt to node failures, and its good network locality properties.

7,423 citations