scispace - formally typeset
Search or ask a question
Author

David R. Smith

Bio: David R. Smith is an academic researcher from Duke University. The author has contributed to research in topics: Metamaterial & Antenna (radio). The author has an hindex of 110, co-authored 881 publications receiving 91683 citations. Previous affiliations of David R. Smith include Brunel University London & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the radioactivity and the decay heat have been calculated, during operation and after shutdown for the two ITER phases, the Physics Phase and the Technology Phase, for different continuous operation times and for only one pulse.
Abstract: Activation analysis has been made for the US ITER design. The radioactivity and the decay heat have been calculated, during operation and after shutdown for the two ITER phases, the Physics Phase and the Technology Phase. The Physics Phase operates about 24 full power days (FPDs) at fusion power level of 1100 MW and the Technology Phase has 860 MW fusion power and operates for about 1360 FPDs. The point-wise gamma sources have been calculated everywhere in the reactor at several times after shutdown of the two phases and are then used to calculate the biological dose everywhere in the reactor. Activation calculations have been made also for ITER divertor. The results are presented for different continuous operation times and for only one pulse. The effect of the pulsed operation on the radioactivity is analyzed. 6 refs., 12 figs., 1 tab.

8 citations

Journal ArticleDOI
TL;DR: In this article, the second generation of high resistivity CCDs, CCD247, is described and the experimental setup and results of X-ray QE measurements taken in the energy range 2-20-keV for a front illuminated CCD 247 are presented.
Abstract: The CCD247 is the second generation of high-resistivity device to be manufactured in e2v technologies plc development programme. Intended for infrared astronomy, the latest devices are fabricated on high resistivity (∼8 kΩ cm) bulk silicon, allowing for a greater device thickness whilst maintaining full depletion when ‘thinned’ to a thickness of 150 μm. In the case of the front illuminated variant, depletion of up to 300 μm is achievable by applying a gate to substrate potential of up to 120 V, whilst retaining adequate spectral performance. The increased depletion depth of high-resistivity CCDs greatly improves the quantum efficiency (QE) for incident X-ray photons of energies above 5 keV, making such a device beneficial in future X-ray astronomy missions and other applications. Here we describe the experimental setup and present results of X-ray QE measurements taken in the energy range 2–20 keV for a front illuminated CCD247, showing QE in excess of 80% at 10 keV. Results for the first generation CCD217 and swept-charge device (1500 Ω cm epitaxial silicon) are also presented.

8 citations

Journal ArticleDOI
01 Sep 2010
TL;DR: In this paper, the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes.
Abstract: We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

8 citations

Posted Content
TL;DR: In this paper, a hybrid structure is presented in the waveguide environment that consists of a resonant magnetic material with a characteristic tuneable gyromagnetic response that is integrated into a complementary split ring resonator (CSRR) metamaterial structure.
Abstract: We explore the hybridization of fundamental material resonances with the artificial resonances of metamaterials. A hybrid structure is presented in the waveguide environment that consists of a resonant magnetic material with a characteristic tuneable gyromagnetic response that is integrated into a complementary split ring resonator (CSRR) metamaterial structure. The combined structure exhibits a distinct hybrid resonance in which each natural resonance of the CSRR is split into a lower and upper resonance that straddle the frequency for which the magnetic material's permeability is zero. We provide an analytical understanding of this hybrid resonance and define an effective medium theory for the combined structure that demonstrates good agreement with numerical electromagnetic simulations. The designed structure demonstrates the potential for using a ferrimagnetic or ferromagnetic material as a means of creating a tunable metamaterial structure.

8 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during Hmode plasmas without large Edge Localized Modes.
Abstract: In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16 °, and field lines passing through diagnostic views are separated by ∼ 20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼ 3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, ...

8 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Abstract: Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

10,689 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations