scispace - formally typeset
Search or ask a question
Author

David R. Smith

Bio: David R. Smith is an academic researcher from Duke University. The author has contributed to research in topics: Metamaterial & Antenna (radio). The author has an hindex of 110, co-authored 881 publications receiving 91683 citations. Previous affiliations of David R. Smith include Brunel University London & Princeton University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER, and a strong increase in confinement with decreasing collisionality and a weak degradation with beta.
Abstract: The NSTX operates at low aspect ratio (R/a ~ 1.3) and high beta (up to 40%), allowing tests of global confinement and local transport properties that have been established from higher aspect ratio devices. The NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER. Confinement scaling studies indicate a strong BT dependence, with a current dependence that is weaker than that observed at higher aspect ratio. Dimensionless scaling experiments indicate a strong increase in confinement with decreasing collisionality and a weak degradation with beta. The increase in confinement with BT is due to reduced transport in the electron channel, while the improvement with plasma current is due to reduced transport in the ion channel related to the decrease in the neoclassical transport level. Improved electron confinement has been observed in plasmas with strong reversed magnetic shear, showing the existence of an electron internal transport barrier (eITB). The development of the eITB may be associated with a reduction in the growth of microtearing modes in the plasma core. Perturbative studies show that while L-mode plasmas with reversed magnetic shear and an eITB exhibit slow changes in across the profile after the pellet injection, H-mode plasmas with a monotonic q-profile and no eITB show no change in this parameter after pellet injection, indicating the existence of a critical gradient that may be related to the q-profile. Both linear and non-linear simulations indicate the potential importance of electron temperature gradient (ETG) modes at the lowest BT. Localized measurements of high-k fluctuations exhibit a sharp decrease in signal amplitude levels across the L–H transition, associated with a decrease in both ion and electron transport, and a decrease in calculated linear microinstability growth rates across a wide k-range, from the ion temperature gradient/TEM regime up to the ETG regime.

103 citations

Journal ArticleDOI
TL;DR: In this article, the impact of non-local effects on the waveguide modes of metallodielectric multilayers and optical patch antennas was analyzed, and the fundamental mode of a metal-dielectric-metal waveguide, sometimes called the gap plasmon, is very sensitive to nonlocality when the insulating, dielectric layers are thinner than 5 nm.
Abstract: We analyze the impact of nonlocality on the waveguide modes of metallodielectric multilayers and optical patch antennas, the latter formed from metal strips closely spaced above a metallic plane. We model both the nonlocal effects associated with the conduction electrons of the metal and the previously overlooked response of bound electrons. We show that the fundamental mode of a metal-dielectric-metal waveguide, sometimes called the gap plasmon, is very sensitive to nonlocality when the insulating, dielectric layers are thinner than 5 nm. We suggest that optical patch antennas, which can easily be fabricated with controlled dielectric spacer layers and can be interrogated using far-field scattering, can enable the measurement of nonlocality in metals with good accuracy.

103 citations

Journal ArticleDOI
TL;DR: In this paper, a set of simple, closed-form analytical expressions can be used to quickly assess the radiation characteristics for a range of designs, and these simple yet compelling guidelines should help to actualize the significant potential of metasurface antennas for dynamically reconfigurable apertures.
Abstract: The waveguide-fed metasurface is an emerging concept for beam forming and wave-front shaping, with applications that include satellite and terrestrial communication, radar, rf imaging, and wireless power transfer. The present work provides in-depth analysis of metasurface antenna operation. A set of simple, closed-form analytical expressions can be used to quickly assess the radiation characteristics for a range of designs. These simple yet compelling guidelines should help to actualize the significant potential of metasurface antennas for dynamically reconfigurable apertures.

102 citations

Journal ArticleDOI
TL;DR: This paper proposes a mathematical model for massive MIMO systems with DMAs and discusses their constraints compared to ideal antenna arrays, characterize the fundamental limits of uplink communications with the resulting systems and proposes two algorithms for designing practical DMAs for approaching these limits.
Abstract: Massive multiple-input–multiple-output (MIMO) communications are the focus of considerable interest in recent years. While the theoretical gains of massive MIMO have been established, implementing MIMO systems with large-scale antenna arrays in practice is challenging. Among the practical challenges associated with massive MIMO systems are increased cost, power consumption, and physical size. In this paper, we study the implementation of massive MIMO antenna arrays using dynamic metasurface antennas (DMAs), an emerging technology which inherently handles the aforementioned challenges. Specifically, DMAs realize large-scale planar antenna arrays and can adaptively incorporate signal processing methods such as compression and analog combining in the physical antenna structure, thus reducing the cost and power consumption. First, we propose a mathematical model for massive MIMO systems with DMAs and discuss their constraints compared to ideal antenna arrays. Then, we characterize the fundamental limits of uplink communications with the resulting systems and propose two algorithms for designing practical DMAs for approaching these limits. Our numerical results indicate that the proposed approaches result in practical massive MIMO systems whose performance is comparable to that achievable with ideal antenna arrays.

102 citations

Journal ArticleDOI
TL;DR: In this article, a prototype spallation neutron-driven solid deuterium source was reported to produce bottled ultra-cold neutrons (UCN) densities of 145±7 UCN/cm 3, about three times greater than the largest bottled UCN densities previously reported.

102 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Abstract: Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

10,689 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations