scispace - formally typeset
Search or ask a question
Author

David R. Smith

Bio: David R. Smith is an academic researcher from Duke University. The author has contributed to research in topics: Metamaterial & Antenna (radio). The author has an hindex of 110, co-authored 881 publications receiving 91683 citations. Previous affiliations of David R. Smith include Brunel University London & Princeton University.


Papers
More filters
Journal ArticleDOI
Jonathan Menard1, Jean Paul Allain2, D. J. Battaglia1, F. Bedoya2, R.E. Bell1, Elena Belova1, John Berkery3, M. D. Boyer1, Neal Crocker4, Ahmed Diallo1, F. Ebrahimi1, Nathaniel Ferraro1, E.D. Fredrickson1, H. Frerichs5, S.P. Gerhardt1, Nikolai Gorelenkov1, W. Guttenfelder1, William Heidbrink6, Robert Kaita1, S.M. Kaye1, D. M. Kriete5, S. Kubota4, B.P. LeBlanc1, D. W. Liu6, Robert Lunsford1, D. Mueller1, Clayton E. Myers1, M. Ono1, J. Park1, Mario Podesta1, Roger Raman7, Matthew Reinke8, Yang Ren1, S.A. Sabbagh3, Oliver Schmitz5, Filippo Scotti9, Y. Sechrest, C.H. Skinner1, David R. Smith5, Vlad Soukhanovskii9, T. Stoltzfus-Dueck1, Howard Yuh, Zhirui Wang1, I. Waters5, Joon-Wook Ahn8, R. Andre1, R. Barchfeld10, Peter Beiersdorfer9, Nicola Bertelli1, Amitava Bhattacharjee1, Dylan Brennan11, R. J. Buttery12, Angela M. Capece13, G. P. Canal12, John Canik8, Choong-Seock Chang1, D. S. Darrow1, L. F. Delgado-Aparicio1, Calvin Domier10, Stephane Ethier1, Todd Evans12, J.R. Ferron12, Michael Finkenthal14, R.J. Fonck5, Kaifu Gan15, David Gates1, I. R. Goumiri5, T.K. Gray8, J. Hosea1, D.A. Humphreys12, Thomas Jarboe7, Stephen Jardin1, Michael Jaworski1, Bruce E. Koel11, Egemen Kolemen11, Seung-Hoe Ku1, R.J. La Haye12, Fred Levinton, Neville C. Luhmann10, R. Maingi1, R.J. Maqueda, George McKee5, E.T. Meier16, J.R. Myra, Rory Perkins1, Francesca Poli1, T. L. Rhodes4, J. Riquezes17, Clarence W. Rowley11, D. A. Russell, Eugenio Schuster18, B. Stratton1, Dan Stutman14, G. Taylor1, Kevin Tritz14, W. H. Wang1, Brian D. Wirth15, Stewart Zweben1 
TL;DR: Menard et al. as mentioned in this paper presented the first run of NSTX-U, which achieved state-of-the-art performance in terms of the number of pulses and toroidal fields.
Abstract: Author(s): Menard, JE; Allain, JP; Battaglia, DJ; Bedoya, F; Bell, RE; Belova, E; Berkery, JW; Boyer, MD; Crocker, N; Diallo, A; Ebrahimi, F; Ferraro, N; Fredrickson, E; Frerichs, H; Gerhardt, S; Gorelenkov, N; Guttenfelder, W; Heidbrink, W; Kaita, R; Kaye, SM; Kriete, DM; Kubota, S; Leblanc, BP; Liu, D; Lunsford, R; Mueller, D; Myers, CE; Ono, M; Park, JK; Podesta, M; Raman, R; Reinke, M; Ren, Y; Sabbagh, SA; Schmitz, O; Scotti, F; Sechrest, Y; Skinner, CH; Smith, DR; Soukhanovskii, V; Stoltzfus-Dueck, T; Yuh, H; Wang, Z; Waters, I; Ahn, JW; Andre, R; Barchfeld, R; Beiersdorfer, P; Bertelli, N; Bhattacharjee, A; Brennan, D; Buttery, R; Capece, A; Canal, G; Canik, J; Chang, CS; Darrow, D; Delgado-Aparicio, L; Domier, C; Ethier, S; Evans, T; Ferron, J; Finkenthal, M; Fonck, R; Gan, K; Gates, D; Goumiri, I; Gray, T; Hosea, J; Humphreys, D; Jarboe, T; Jardin, S; Jaworski, MA; Koel, B; Kolemen, E; Ku, S; La Haye, RJ; Levinton, F; Luhmann, N; Maingi, R; Maqueda, R; McKee, G; Meier, E; Myra, J; Perkins, R | Abstract: The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, the H-mode accessed, magnetic error fields identified and mitigated, and the first physics research campaign carried out. During ten run weeks of operation, NSTX-U surpassed NSTX record pulse-durations and toroidal fields (TF), and high-performance ∼1 MA H-mode plasmas comparable to the best of NSTX have been sustained near and slightly above the n = 1 no-wall stability limit and with H-mode confinement multiplier H98y,2 above 1. Transport and turbulence studies in L-mode plasmas have identified the coexistence of at least two ion-gyro-scale turbulent micro-instabilities near the same radial location but propagating in opposite (i.e. ion and electron diamagnetic) directions. These modes have the characteristics of ion-temperature gradient and micro-tearing modes, respectively, and the role of these modes in contributing to thermal transport is under active investigation. The new second more tangential neutral beam injection was observed to significantly modify the stability of two types of Alfven eigenmodes. Improvements in offline disruption forecasting were made in the areas of identification of rotating MHD modes and other macroscopic instabilities using the disruption event characterization and forecasting code. Lastly, the materials analysis and particle probe was utilized on NSTX-U for the first time and enabled assessments of the correlation between boronized wall conditions and plasma performance. These and other highlights from the first run campaign of NSTX-U are described.

50 citations

Journal ArticleDOI
TL;DR: It is observed that longer wavelength modes, k(⊥)ρ(s) ≲ 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of 2 decrease in the plasma effective thermal diffusivity.
Abstract: In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

50 citations

Journal ArticleDOI
TL;DR: In this paper, strong optical bistability and all-optical switching behavior can be obtained by loading these nanogaps with Kerr nonlinear materials, which can lead to efficient, low-power, and ultrafast alloptical memories and scattering nanoswitches.
Abstract: Colloidally synthesized nanocubes strongly coupled to conducting films hold great promise for enhancing different nonlinear optical processes. They exhibit a robust and sensitive scattering response that can be easily controlled by their geometrical and material parameters. Strong local field enhancement is generated at the gap regions between the nanocubes and the metallic film. We show that strong optical bistability and all-optical switching behavior can be obtained by loading these nanogaps with Kerr nonlinear materials. Relatively low input intensities are required to obtain these nonlinear effects. The proposed design can lead to efficient, low-power, and ultrafast all-optical memories and scattering nanoswitches.

50 citations

Journal ArticleDOI
TL;DR: It is shown by numerical simulation as well as by measurements on negative-index metamaterial wedge samples, that the unavoidable stepping of the refraction interface can give rise to a well-defined diffracted beam in addition to the negatively refracted beam.
Abstract: We show by numerical simulation as well as by measurements on negative-index metamaterial wedge samples, that the unavoidable stepping of the refraction interface-due to the finite unit-cell size inherent to metamaterials-can give rise to a well-defined diffracted beam in addition to the negatively refracted beam. The direction of the diffracted beam is consistent with elementary diffraction theory; however, the coupling to this higher order beam is much larger than would be the case for a positive index material. The results confirm recent theoretical predictions of enhanced diffraction for negative-index grating surfaces.

49 citations

Journal ArticleDOI
TL;DR: In this article, the spectral properties of film-coupled plasmon-resonant, gold nanoparticles with dielectric spacer layers fabricated either using atomic layer deposition or using organic layers (polyelectrolytes or self-assembled monolayers of molecules).
Abstract: Film-coupled nanoparticle systems have proven a reliable platform for exploring the field enhancement associated with sub-nanometer sized gaps between plasmonic nanostructures. In this Letter, we present a side-by-side comparison of the spectral properties of film-coupled plasmon-resonant, gold nanoparticles, with dielectric spacer layers fabricated either using atomic layer deposition or using organic layers (polyelectrolytes or self-assembled monolayers of molecules). In either case, large area, uniform spacer layers with sub-nanometer thicknesses can be accurately deposited, allowing extreme coupling regimes to be probed. The observed spectral shifts of the nanoparticles as a function of spacer layer thickness are similar for the organic and inorganic films and are consistent with numerical calculations taking into account the nonlocal response of the metal.

49 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Abstract: Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons--in particular their interaction with light--can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

10,689 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations