scispace - formally typeset
Search or ask a question
Author

David Rebollo-Monedero

Other affiliations: Stanford University
Bio: David Rebollo-Monedero is an academic researcher from Polytechnic University of Catalonia. The author has contributed to research in topics: Information privacy & Quantization (signal processing). The author has an hindex of 24, co-authored 67 publications receiving 2685 citations. Previous affiliations of David Rebollo-Monedero include Stanford University.


Papers
More filters
Journal ArticleDOI
27 Jun 2005
TL;DR: The recent development of practical distributed video coding schemes is reviewed, finding that the rate-distortion performance is superior to conventional intraframe coding, but there is still a gap relative to conventional motion-compensated interframe coding.
Abstract: Distributed coding is a new paradigm for video compression, based on Slepian and Wolf's and Wyner and Ziv's information-theoretic results from the 1970s. This paper reviews the recent development of practical distributed video coding schemes. Wyner-Ziv coding, i.e., lossy compression with receiver side information, enables low-complexity video encoding where the bulk of the computation is shifted to the decoder. Since the interframe dependence of the video sequence is exploited only at the decoder, an intraframe encoder can be combined with an interframe decoder. The rate-distortion performance is superior to conventional intraframe coding, but there is still a gap relative to conventional motion-compensated interframe coding. Wyner-Ziv coding is naturally robust against transmission errors and can be used for joint source-channel coding. A Wyner-Ziv MPEG encoder that protects the video waveform rather than the compressed bit stream achieves graceful degradation under deteriorating channel conditions without a layered signal representation.

1,342 citations

Journal ArticleDOI
TL;DR: This work defines a privacy measure in terms of information theory, similar to t-closeness, and uses the tools of that theory to show that this privacy measure can be achieved by the postrandomization method (PRAM) for masking in the discrete case, and by a form of noise addition in the general case.
Abstract: t-Closeness is a privacy model recently defined for data anonymization. A data set is said to satisfy t-closeness if, for each group of records sharing a combination of key attributes, the distance between the distribution of a confidential attribute in the group and the distribution of the attribute in the entire data set is no more than a threshold t. Here, we define a privacy measure in terms of information theory, similar to t-closeness. Then, we use the tools of that theory to show that our privacy measure can be achieved by the postrandomization method (PRAM) for masking in the discrete case, and by a form of noise addition in the general case.

210 citations

Proceedings ArticleDOI
25 Mar 2003
TL;DR: The paper shows the optimality conditions that quantizers must satisfy, and generalizes the Lloyd algorithm for their design, and experimental results are shown for the Gaussian scalar asymmetric case.
Abstract: The problem of designing optimal quantizers for distributed source coding is addressed. The generality of this formulation includes both the symmetric and asymmetric scenarios, together with a number of coding schemes, such as ideal coding achieving a rate equal to the joint conditional entropy of the quantized sources given the side information. The paper shows the optimality conditions that quantizers must satisfy, and generalizes the Lloyd algorithm for their design. Experimental results are shown for the Gaussian scalar asymmetric case.

110 citations

Journal ArticleDOI
TL;DR: This work presents a mathematical formulation for the optimization of query forgery for private information retrieval, in the sense that the privacy risk is minimized for a given traffic and processing overhead.
Abstract: We present a mathematical formulation for the optimization of query forgery for private information retrieval, in the sense that the privacy risk is minimized for a given traffic and processing overhead. The privacy risk is measured as an information-theoretic divergence between the user's query distribution and the population's, which includes the entropy of the user's distribution as a special case. We carefully justify and interpret our privacy criterion from diverse perspectives. Our formulation poses a mathematically tractable problem that bears substantial resemblance with rate-distortion theory.

71 citations

Journal ArticleDOI
TL;DR: This paper justifies and interpret KL divergence as a criterion for quantifying the privacy of user profiles, and elaborate on the intimate connection between Jaynes' celebrated method of entropy maximization and the use of entropies and divergences as measures of privacy.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.

2,311 citations