scispace - formally typeset
Search or ask a question
Author

David Rickard

Bio: David Rickard is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Carbon nanotube & Nanowire. The author has an hindex of 7, co-authored 10 publications receiving 1615 citations.

Papers
More filters
Journal ArticleDOI
02 Mar 2010-Langmuir
TL;DR: The dispersibility of graphene is measured in 40 solvents, with 28 of them previously unreported, and transmission electron microscopy analysis is used to show that the graphene is well exfoliated in all cases.
Abstract: We have measured the dispersibility of graphene in 40 solvents, with 28 of them previously unreported. We have shown that good solvents for graphene are characterized by a Hildebrand solubility parameter of δT ∼ 23 MPa1/2 and Hansen solubility parameters of δD ∼ 18 MPa1/2, δP ∼ 9.3 MPa1/2, and δH ∼ 7.7 MPa1/2. The dispersibility is smaller for solvents with Hansen parameters further from these values. We have used transmission electron microscopy (TEM) analysis to show that the graphene is well exfoliated in all cases. Even in relatively poor solvents, >63% of observed flakes have <5 layers.

587 citations

Journal ArticleDOI
TL;DR: In this article, stable dispersions of single-walled carbon nanotubes in deionized water were prepared using six common surfactants: sodium dodecylbenzene sulfonate (SDBS), SDS, SDSS, LDS, TTAB, SC, and Fairy liquid (FL).
Abstract: Stable dispersions of single-walled carbon nanotubes in deionized water were prepared using six common surfactants: sodium dodecylbenzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), lithium dodecyl sulfate (LDS), tetradecyl trimethyl ammonium bromide (TTAB), sodium cholate (SC), and Fairy liquid (FL). For all nanotube dispersions (CNT = 1 mg/mL), the optimum concentration of surfactant was found to be close to CSurf = 10 mg/mL by measuring the fraction of nanotubes remaining after centrifugation for a range of surfactant concentrations. The aggregation state of each nanotube−surfactant dispersion was characterized as a function of nanotube concentration by AFM analysis of large numbers of nanotubes/bundles deposited onto substrates. The dispersion quality could then be quantified by four parameters: the saturation value (at low concentration) of the root-mean-square bundle diameter, the maximum value of the total number of dispersed objects (individuals and bundles) per unit volume of dispersion, the ...

357 citations

Journal ArticleDOI
05 Aug 2009-ACS Nano
TL;DR: It is proposed that neither Hildebrand nor Hansen solubility parameters are fundamental quantities when it comes to nanotube-solvent interactions, and it is confirmed that successful solvents occupy a well-defined range of Hansen parameter space.
Abstract: We have measured the dispersibility of single-walled carbon nanotubes in a range of solvents, observing values as high as 3.5 mg/mL. By plotting the nanotube dispersibility as a function of the Hansen solubility parameters of the solvents, we have confirmed that successful solvents occupy a well-defined range of Hansen parameter space. The level of dispersibility is more sensitive to the dispersive Hansen parameter than the polar or H-bonding Hansen parameter. We estimate the dispersion, polar, and hydrogen bonding Hansen parameter for the nanotubes to be = 17.8 MPa(1/2), = 7.5 MPa(1/2), and = 7.6 MPa(1/2). We find that the nanotube dispersibility in good solvents decays smoothly with the distance in Hansen space from solvent to nanotube solubility parameters. Finally, we propose that neither Hildebrand nor Hansen solubility parameters are fundamental quantities when it comes to nanotube-solvent interactions. We show that the previously calculated dependence of nanotube Hildebrand parameter on nanotube diameter can be reproduced by deriving a simple expression based on the nanotube surface energy. We show that solubility parameters based on surface energy give equivalent results to Hansen solubility parameters. However, we note that, contrary to solubility theory, a number of nonsolvents for nanotubes have both Hansen and surface energy solubility parameters similar to those calculated for nanotubes. The nature of the distinction between solvents and nonsolvents remains to be fully understood.

342 citations

Journal ArticleDOI
19 Sep 2011-Small
TL;DR: A method to produce scalable, low-resistance, high-transparency, percolating networks of silver nanowires by spray coating is presented and the critical processing parameter is shown to be the spraying pressure.
Abstract: A method to produce scalable, low-resistance, high-transparency, percolating networks of silver nanowires by spray coating is presented. By optimizing the spraying parameters, networks with a sheet resistance of R(s) ≈ 50 Ω □(-1) at a transparency of T = 90% can be produced. The critical processing parameter is shown to be the spraying pressure. Optimizing the pressure reduces the droplet size resulting in more uniform networks. High uniformity leads to a low percolation exponent, which is essential for low-resistance, high-transparency films.

327 citations

Journal ArticleDOI
TL;DR: In this paper, stable dispersions of single-walled carbon nanotubes have been produced using the surfactant sodium dodecylbenzene sulfonate (SDBS).
Abstract: Stable dispersions of single-walled carbon nanotubes have been produced using the surfactant sodium dodecylbenzene sulfonate (SDBS). Atomic force microscopy analysis shows that, on dilution of these dispersions, the nanotubes exfoliate from bundles, resulting in a concentration-dependent bundle diameter distribution which saturates at Drms ≈ 2 nm for concentrations, CNT 0.05 mg/mL. As the concentration is reduced the number fraction of individual nanotubes grows, approaching 50% at low concentration. In addition, partial concentrations of individual SWNTs approaching 0.01 mg/mL can be realized. These values are far superior to those for solvent dispersions due to repulsion stabilization of the surfactant-coated nanotubes. These methods facilitate the preparation of high-quality nanotube dispersions without the need for ultracentrifugation, thus significantly increasing the yield of disper...

80 citations


Cited by
More filters
Journal ArticleDOI
04 Feb 2011-Science
TL;DR: It is shown that WS2 and MoS2 effectively reinforce polymers, whereas WS2/carbon nanotube hybrid films have high conductivity, leading to promising thermoelectric properties.
Abstract: If they could be easily exfoliated, layered materials would become a diverse source of two-dimensional crystals whose properties would be useful in applications ranging from electronics to energy storage. We show that layered compounds such as MoS2, WS2, MoSe2, MoTe2, TaSe2, NbSe2, NiTe2, BN, and Bi2Te3 can be efficiently dispersed in common solvents and can be deposited as individual flakes or formed into films. Electron microscopy strongly suggests that the material is exfoliated into individual layers. By blending this material with suspensions of other nanomaterials or polymer solutions, we can prepare hybrid dispersions or composites, which can be cast into films. We show that WS2 and MoS2 effectively reinforce polymers, whereas WS2/carbon nanotube hybrid films have high conductivity, leading to promising thermoelectric properties.

6,043 citations

Journal ArticleDOI
21 Jun 2013-Science
TL;DR: A number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets, which are ideal for applications that require surface activity.
Abstract: Background Since at least 400 C.E., when the Mayans first used layered clays to make dyes, people have been harnessing the properties of layered materials. This gradually developed into scientific research, leading to the elucidation of the laminar structure of layered materials, detailed understanding of their properties, and eventually experiments to exfoliate or delaminate them into individual, atomically thin nanosheets. This culminated in the discovery of graphene, resulting in a new explosion of interest in two-dimensional materials. Layered materials consist of two-dimensional platelets weakly stacked to form three-dimensional structures. The archetypal example is graphite, which consists of stacked graphene monolayers. However, there are many others: from MoS 2 and layered clays to more exotic examples such as MoO 3 , GaTe, and Bi 2 Se 3 . These materials display a wide range of electronic, optical, mechanical, and electrochemical properties. Over the past decade, a number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets. Such exfoliation creates extremely high-aspect-ratio nanosheets with enormous surface area, which are ideal for applications that require surface activity. More importantly, however, the two-dimensional confinement of electrons upon exfoliation leads to unprecedented optical and electrical properties. Liquid exfoliation of layered crystals allows the production of suspensions of two-dimensional nanosheets, which can be formed into a range of structures. (A) MoS 2 powder. (B) WS 2 dispersed in surfactant solution. (C) An exfoliated MoS 2 nanosheet. (D) A hybrid material consisting of WS 2 nanosheets embedded in a network of carbon nanotubes. Advances An important advance has been the discovery that layered crystals can be exfoliated in liquids. There are a number of methods to do this that involve oxidation, ion intercalation/exchange, or surface passivation by solvents. However, all result in liquid dispersions containing large quantities of nanosheets. This brings considerable advantages: Liquid exfoliation allows the formation of thin films and composites, is potentially scaleable, and may facilitate processing by using standard technologies such as reel-to-reel manufacturing. Although much work has focused on liquid exfoliation of graphene, such processes have also been demonstrated for a host of other materials, including MoS 2 and related structures, layered oxides, and clays. The resultant liquid dispersions have been formed into films, hybrids, and composites for a range of applications. Outlook There is little doubt that the main advances are in the future. Multifunctional composites based on metal and polymer matrices will be developed that will result in enhanced mechanical, electrical, and barrier properties. Applications in energy generation and storage will abound, with layered materials appearing as electrodes or active elements in devices such as displays, solar cells, and batteries. Particularly important will be the use of MoS 2 for water splitting and metal oxides as hydrogen evolution catalysts. In addition, two-dimensional materials will find important roles in printed electronics as dielectrics, optoelectronic devices, and transistors. To achieve this, much needs to be done. Production rates need to be increased dramatically, the degree of exfoliation improved, and methods to control nanosheet properties developed. The range of layered materials that can be exfoliated must be expanded, even as methods for chemical modification must be developed. Success in these areas will lead to a family of materials that will dominate nanomaterials science in the 21st century.

3,127 citations

Journal ArticleDOI
TL;DR: A method to disperse and exfoliate graphite to give graphene suspended in water-surfactant solutions and suggests the flakes to be largely free of defects and oxides, although X-ray photoelectron spectroscopy shows evidence of a small oxide population.
Abstract: We have demonstrated a method to disperse and exfoliate graphite to give graphene suspended in water−surfactant solutions. Optical characterization of these suspensions allowed the partial optimization of the dispersion process. Transmission electron microscopy showed the dispersed phase to consist of small graphitic flakes. More than 40% of these flakes had <5 layers with ∼3% of flakes consisting of monolayers. Atomic resolution transmission electron microscopy shows the monolayers to be generally free of defects. The dispersed graphitic flakes are stabilized against reaggregation by Coulomb repulsion due to the adsorbed surfactant. We use DLVO and Hamaker theory to describe this stabilization. However, the larger flakes tend to sediment out over ∼6 weeks, leaving only small flakes dispersed. It is possible to form thin films by vacuum filtration of these dispersions. Raman and IR spectroscopic analysis of these films suggests the flakes to be largely free of defects and oxides, although X-ray photoelect...

2,086 citations

Journal ArticleDOI
TL;DR: It is shown that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond.
Abstract: To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

1,973 citations

Journal ArticleDOI
TL;DR: This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings.
Abstract: Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications.

1,947 citations