scispace - formally typeset
Search or ask a question
Author

David Ruppert

Bio: David Ruppert is an academic researcher from Cornell University. The author has contributed to research in topics: Estimator & Nonparametric regression. The author has an hindex of 61, co-authored 252 publications receiving 27137 citations. Previous affiliations of David Ruppert include University of Vermont & University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
TL;DR: The Elements of Statistical Learning: Data Mining, Inference, and Prediction as discussed by the authors is a popular book for data mining and machine learning, focusing on data mining, inference, and prediction.
Abstract: (2004). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Journal of the American Statistical Association: Vol. 99, No. 466, pp. 567-567.

10,549 citations

Book
01 Jan 1995
TL;DR: In this paper, the authors propose fitting methods and models for regression and attenuation in the context of Bayesian methods and nonparametric regression for density estimation and non-parametric regression.
Abstract: Preface Guide to Notation 1. Introduction 2. Regression and Attenuation 3. Regression Calibration 4. Simulation Extrapolation 5. Instrumental Variables 6. Functional Methods 7. Likelihood and Quasilikelihood 8. Bayesian Methods 9. Semiparametric Methods 10. Unknown Link Functions 11. Hypothesis Testing 12. Density Estimation and Nonparametric Regression 13. Response Variable Error 14. Other Topics Appendix: Fitting Methods and Models References Author Index Subject Index

1,757 citations

Book
21 Jun 2006
TL;DR: The second edition of Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition has been revised and re-released in this paper, with a new cover and a new introduction.
Abstract: It's been over a decade since the first edition of Measurement Error in Nonlinear Models splashed onto the scene, and research in the field has certainly not cooled in the interim. In fact, quite the opposite has occurred. As a result, Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition has been revamped and ex

1,515 citations

Book
01 Aug 1988
TL;DR: The Transform-Both-Sides Methodology as mentioned in this paper combines Transformations and Weighting for least square estimation and inference for Variance Functions, which has been applied to generalized least squares and the analysis of heteroscedasticity.
Abstract: Introduction. Generalized Least Squares and the Analysis of Heteroscedasticity. Estimation and Inference for Variance Functions. The Transform-Both-Sides Methodology. Combining Transformations and Weighting. Influence and Robustness. Technical Complements. Some Open Problems. References. Index.

1,472 citations

Journal ArticleDOI
TL;DR: In this article, the asymptotic conditional bias and variance of the estimator at points near the boundary of the support of the predictors were derived using weighted least squares matrix theory.
Abstract: Nonparametric regression using locally weighted least squares was first discussed by Stone and by Cleveland. Recently, it was shown by Fan and by Fan and Gijbels that the local linear kernel-weighted least squares regression estimator has asymptotic properties making it superior, in certain senses, to the Nadaraya-Watson and Gasser-Muller kernel estimators. In this paper we extend their results on asymptotic bias and variance to the case of multivariate predictor variables. We are able to derive the leading bias and variance terms for general multivariate kernel weights using weighted least squares matrix theory. This approach is especially convenient when analysing the asymptotic conditional bias and variance of the estimator at points near the boundary of the support of the predictors. We also investigate the asymptotic properties of the multivariate local quadratic least squares regression estimator discussed by Cleveland and Devlin and, in the univariate case, higher-order polynomial fits and derivative estimation.

1,082 citations


Cited by
More filters
Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Posted Content
TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

23,486 citations

Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations