scispace - formally typeset
Search or ask a question

Showing papers by "David S. Cannell published in 2006"


Journal ArticleDOI
TL;DR: A form of schlieren interferometry is used to measure the mean-squared amplitude and temporal autocorrelation function of concentration fluctuations driven by the presence of a gradient during the free diffusion of a urea solution into water.
Abstract: We used a form of schlieren interferometry to measure the mean-squared amplitude and temporal autocorrelation function of concentration fluctuations driven by the presence of a gradient during the free diffusion of a urea solution into water. By taking and processing sequences of images separated in time by less than the shortest correlation time of interest, we were able to simultaneously measure dynamics at a number of different wave vectors. The technique is conceptually similar to the shadowgraph method, which has been used to make similar measurements, but the schlieren method has the advantage that the transfer function is wave-vector independent rather than oscillatory.

64 citations


Journal ArticleDOI
TL;DR: A quantitative dynamic shadowgraph technique is utilized to obtain the temporal correlation function of a mixture of LUDOX® TMA and water undergoing free diffusion, which allows one to simultaneously measure correlation functions achieving good statistics for a number of different wave vectors in a single measurement.
Abstract: Diffusion is commonly believed to be a homogeneous process at the mesoscopic scale, being driven only by the random walk of fluid molecules. On the contrary, very large amplitude, long wavelength fluctuations always accompany diffusive processes. In the presence of gravity, fluctuations in a fluid containing a stabilizing gradient are affected by two different processes: diffusion, which relaxes them, and the buoyancy force, which quenches them. These phenomena affect both the overall amplitude of fluctuations and their time dependence. For the case of free diffusion, the time-correlation function of the concentration fluctuations is predicted to exhibit an exponential decay with correlation time depending on the wave vector q. For large wave vector fluctuations, diffusion dominates, and the correlation time is predicted to be 1 / (Dq2). For small wave vector fluctuations, gravitational forces have time to play a significant role, and the correlation time is predicted to be proportional to q2. The effects of gravity and diffusion are comparable for a critical wave vector q(c) determined by fluid properties and gravity. We have utilized a quantitative dynamic shadowgraph technique to obtain the temporal correlation function of a mixture of LUDOX(R) TMA and water undergoing free diffusion. This technique allows one to simultaneously measure correlation functions achieving good statistics for a number of different wave vectors in a single measurement. Wave vectors as small as 70 cm(-1) have been investigated, which is very difficult to achieve with ordinary dynamic light-scattering techniques. We present results on the transition from the diffusive decay of fluctuations to the regime in which gravity is dominant.

46 citations


Journal ArticleDOI
TL;DR: An experimental breadboard developed for the investigation of nonequilibrium fluctuations induced by macroscopic temperature and concentration gradients under microgravity conditions is described and preliminary experimental results for S(q) obtained in the presence of gravity for gradient-driven fluctuations are presented.
Abstract: We describe an experimental breadboard developed for the investigation of nonequilibrium fluctuations induced by macroscopic temperature and concentration gradients under microgravity conditions. Under these conditions the amplitude of the fluctuations diverges strongly for long wavelengths. The setup was developed at the University of Milan and at the University of California at Santa Barbara within the gradient-driven fluctuations experiment (GRADFLEX) project of the European Space Agency, in collaboration with the National Aeronautics and Space Administration. The apparatus uses a quantitative shadowgraph technique for characterization of the static power spectrum of the fluctuations S(q) and the measurement of their dynamics. We present preliminary experimental results for S(q) obtained in the presence of gravity for gradient-driven fluctuations for two cases, those induced in a liquid mixture with a concentration gradient produced by the Soret effect and those induced in a single-component fluid by a temperature gradient.

36 citations


Journal ArticleDOI
TL;DR: It is found that the threshold concentration of polyamine needed to bundle actin is independent of both actin concentration and Mg2+ concentration over a wide range in Mg 2+ concentration.
Abstract: To better understand the mechanism of actin filament (F-actin) bundling by polyamines, we have measured the onset of bundling as a function of polyamine concentration. Samples were centrifuged at low speeds to separate bundles from unbundled actin, and the relative amounts of actin in the pellet and supernatant were determined via gel electrophoresis, yielding a description of the bundling transition as a function of actin and polyamine concentrations. These experiments were carried out for two different polyamines, spermine (tetravalent) and spermidine (trivalent). We found that the threshold concentration of polyamine needed to bundle actin is independent of both actin concentration and Mg2+ concentration over a wide range in Mg2+ concentration. We also find that spermine in F-actin bundles is essentially invisible in solution-phase proton NMR, suggesting that it is bound so tightly to F-actin that it is immobilized.

12 citations