scispace - formally typeset
Search or ask a question
Author

David S. Cannell

Bio: David S. Cannell is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Convection & Light scattering. The author has an hindex of 40, co-authored 128 publications receiving 5921 citations. Previous affiliations of David S. Cannell include Memorial University of Newfoundland.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the electroconvection patterns in the liquid crystal 4-ethyl-2-fluoro-4′-[2-(trans-4-pentylcyclohexyl)-ethyl]biphenyl (152) for two values of the parameter Td/T[sgrave, where Td is the director relaxation time and T[ sgrave] is the charge relaxation time, as a function of the rms voltage and frequency of an applied AC electric field.
Abstract: We report on electroconvection patterns in the liquid crystal 4-ethyl-2-fluoro-4′-[2-(trans-4-pentylcyclohexyl)-ethyl]biphenyl (152) for two values of the parameter Td/T[sgrave], where Td is the director relaxation time and T[sgrave] is the charge relaxation time, as a function of the rms voltage and frequency of an applied AC electric field. For Td/T[sgrave] = 180, we observe a forward Hopf bifurcation to a superposition of the two degenerate oblique roll states. The envelopes of these patterns are chaotic in space and time. There exists a secondary transition to a state which oscillates between the two degenerate modes. For Td/T[sgrave] = 620, the initial instability is to a state of stationary oblique rolls. The secondary transition is to a superposition of the already existing oblique rolls and rolls of the same wavenumber which are perpendicular to the existing rolls. This forms stationary oblique squares.

12 citations

Journal ArticleDOI
TL;DR: It is found that the threshold concentration of polyamine needed to bundle actin is independent of both actin concentration and Mg2+ concentration over a wide range in Mg 2+ concentration.
Abstract: To better understand the mechanism of actin filament (F-actin) bundling by polyamines, we have measured the onset of bundling as a function of polyamine concentration. Samples were centrifuged at low speeds to separate bundles from unbundled actin, and the relative amounts of actin in the pellet and supernatant were determined via gel electrophoresis, yielding a description of the bundling transition as a function of actin and polyamine concentrations. These experiments were carried out for two different polyamines, spermine (tetravalent) and spermidine (trivalent). We found that the threshold concentration of polyamine needed to bundle actin is independent of both actin concentration and Mg2+ concentration over a wide range in Mg2+ concentration. We also find that spermine in F-actin bundles is essentially invisible in solution-phase proton NMR, suggesting that it is bound so tightly to F-actin that it is immobilized.

12 citations

Journal ArticleDOI
TL;DR: It is found that external rotation stabilizes the base flow and decreases the critical wave number of the tilted vortices that form at the onset of the first instability.
Abstract: We report theoretical results for Taylor-vortex flow subjected to external rotation. The system consists of an incompressible viscous fluid between two concentric cylinders with the inner one rotating about their common axis. The two cylinders also rotate together with a dimensionless angular velocity \ensuremath{\Omega} about an axis orthogonal to their axis. We perturbatively calculated the base flow to second order in \ensuremath{\Omega} and carried out a linear stability analysis of this flow. We found that external rotation stabilizes the base flow and decreases the critical wave number of the tilted vortices that form at the onset of the first instability. Our results for the critical Reynolds number, the critical wave number, and the tilt angle, together with the coefficients of linear terms in the relevant Ginzburg-Landau amplitude equation, are presented to order ${\mathrm{\ensuremath{\Omega}}}^{2}$.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
TL;DR: An overview about the selection of the ingredients, different ways of SLN production and SLN applications, and the in vivo fate of the carrier are presented.

2,786 citations

Journal ArticleDOI
TL;DR: These techniques are described and illustrated with examples highlighting current capabilities and limitations of single-molecule force spectroscopy.
Abstract: Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

2,155 citations

Dissertation
01 Oct 1948
TL;DR: In this article, it was shown that a metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.
Abstract: IN two previous notes1, Prof. Max Born and I have shown that one can obtain a theory of superconductivity by taking account of the fact that the interaction of the electrons with the ionic lattice is appreciable only near the boundaries of Brillouin zones, and particularly strong near the corners of these. This leads to the criterion that the metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.

2,042 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the hydro- dynamic stability theory of spatially developing flows pertaining to absolute/convective and local/global instability concepts is presented.
Abstract: The goal of this survey is to review recent developments in the hydro­ dynamic stability theory of spatially developing flows pertaining to absolute/convective and local/global instability concepts. We wish to dem­ onstrate how these notions can be used effectively to obtain a qualitative and quantitative description of the spatio-temporal dynamics of open shear flows, such as mixing layers, jets, wakes, boundary layers, plane Poiseuille flow, etc. In this review, we only consider open flows where fluid particles do not remain within the physical domain of interest but are advected through downstream flow boundaries. Thus, for the most part, flows in "boxes" (Rayleigh-Benard convection in finite-size cells, Taylor-Couette flow between concentric rotating cylinders, etc.) are not discussed. Further­ more, the implications of local/global and absolute/convective instability concepts for geophysical flows are only alluded to briefly. In many of the flows of interest here, the mean-velocity profile is non-

1,988 citations