scispace - formally typeset
Search or ask a question
Author

David S. McPhail

Bio: David S. McPhail is an academic researcher from Imperial College London. The author has contributed to research in topics: Secondary ion mass spectrometry & Focused ion beam. The author has an hindex of 27, co-authored 117 publications receiving 3072 citations. Previous affiliations of David S. McPhail include University of Texas at Dallas & London Centre for Nanotechnology.


Papers
More filters
Journal ArticleDOI
14 Feb 2002-Nature
TL;DR: N nanometre-scale secondary ion mass spectroscopy is used to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles, indicating chromium-depleted zones are susceptible to high-rate dissolution that ‘triggers’ pitting.
Abstract: Stainless steels are used in countless diverse applications for their corrosion resistance. Although they have extremely good general resistance, they are nevertheless susceptible to pitting corrosion. This localized dissolution of an oxide-covered metal in specific aggressive environments is one of the most common and catastrophic causes of failure of metallic structures. The pitting process has been described as random, sporadic and stochastic and the prediction of the time and location of events remains extremely difficult. Many contested models of pitting corrosion exist, but one undisputed aspect is that manganese sulphide inclusions play a critical role. Indeed, the vast majority of pitting events are found to occur at, or adjacent to, such second-phase particles. Chemical changes in and around sulphide inclusions have been postulated as a mechanism for pit initiation but such variations have never been measured. Here we use nanometre-scale secondary ion mass spectroscopy to demonstrate a significant reduction in the Cr:Fe ratio of the steel matrix around MnS particles. These chromium-depleted zones are susceptible to high-rate dissolution that 'triggers' pitting. The implications of these results are that materials processing conditions control the likelihood of corrosion failures, and these data provide a basis for optimizing such conditions.

559 citations

Journal ArticleDOI
TL;DR: In this paper, the outer atomic surfaces of a series of perovskite-based ceramics using low energy ion scattering spectroscopy were studied and it was shown that segregated A-site (or acceptor substituent) cations dominate the outer surfaces with no B-site cations detected.
Abstract: We study the outer atomic surfaces of a series of perovskite-based ceramics using low energy ion scattering spectroscopy. After high temperature treatment, segregated A-site (or acceptor substituent) cations dominate the outer surfaces with no B-site cations detected. We also find evidence of an associated B-cation enriched region below the surface.

267 citations

Journal ArticleDOI
TL;DR: In this article, the microstructure of polymer-fullerene systems was manipulated via processing means and the selection of the molecular weight of the donor polymer, which was used as a tool to vary the fraction of intermixed phase present and its effects on the structure and subsequently the opto-electronic processes.
Abstract: Recently, an intermixed phase has been identified within organic photovoltaic (OPV) bulk heterojunction (BHJ) systems that can exist in addition to relatively phase-pure regions, highlighting the need for a refined picture of the solid-state microstructure of donor–acceptor blends and for gaining further understanding of the exact nature and role such intermixed phases play in such devices. Here we manipulate the microstructure of polymer–fullerene systems via processing means and the selection of the molecular weight of the donor polymer. This manipulation is used as a tool to vary the fraction of intermixed phase present and its effects on the structure and subsequently the opto-electronic processes. We find clear relationships between the state of mixing and amount of exciton quenching and number of polarons generated per absorbed photon. Furthermore, we observe that blend systems incorporating higher molecular weight polymer result in a greater yield of dissociated polarons, likely due to the increase of the intermixed fraction.

161 citations

Journal ArticleDOI
TL;DR: The chemical analysis of excavated glass fragments from dated archaeological contexts in Raqqa, Syria, has provided a detailed picture of the chemical compositions of artefacts deriving from 8th to 9th and 11th century glassmaking and glassworking activities as discussed by the authors.
Abstract: The chemical analysis of excavated glass fragments from dated archaeological contexts in Raqqa, Syria, has provided a detailed picture of the chemical compositions of artefacts deriving from eighth to ninth and 11th century glassmaking and glassworking activities. Evidence for primary glass production has been found at three excavated sites, of eighth to ninth, 11th and 12th century dates; the first two are discussed here. The 2 km long industrial complex at al-Raqqa was associated with an urban landscape consisting of two Islamic cities (al-Raqqa and al-Rafika) and a series of palace complexes. The glass fused and worked there was presumably for local as well as for regional consumption. Al-Raqqa currently appears to have produced the earliest well-dated production on record in the Middle East of an Islamic high-magnesia glass based on an alkaline plant ash flux and quartz. An eighth to ninth century late ‘Roman’/Byzantine soda–lime recipe of natron and sand begins to be replaced in the eighth to ninth century by a plant ash – quartz Islamic soda–lime composition. By the 11th century, this process was nearly complete. The early Islamic natron glass compositional group from al-Raqqa shows very little spread in values, indicating a repeatedly well-controlled process with the use of chemically homogeneous raw materials. A compositionally more diffuse range of eighth to ninth century plant ash glass compositions have been identified. One is not only distinct from established groups of plant ash and natron glasses, but is believed to be the result of experimentation with new raw material combinations. Compositional analysis of primary production waste including furnace glass (raw glass adhering to furnace brick) shows that contemporary glasses of three distinct plant ash types based on various combinations of plant ash, quartz and sand were being made in al-Raqqa during the late eighth to ninth centuries. This is a uniquely wide compositional range from an ancient glass production site, offering new insights into the complexity of Islamic glass technology at a time of change and innovation.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the residual stress relaxation of the nickel-based alloy RR1000 due to thermal exposure and dwell-fatigue loading was assessed. But the residual stresses were not significantly reduced at nearly all depths.

130 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Journal ArticleDOI
TL;DR: Progress is summarized, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances.
Abstract: The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics. Recently, nonfullerene acceptor materials, particularly small molecules and oligomers, have emerged as a promising alternative to replace fullerene derivatives. Compared to fullerenes, these new acceptors are generally synthesized from diversified, low-cost routes based on building block materials with extraordinary chemical, thermal, and photostability. The facile functionalization of these molecules affords excellent tunability to their optoelectronic and electrochemical properties. Within t...

1,269 citations

Journal ArticleDOI
TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Abstract: Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjug...

995 citations